首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlative species distribution models are frequently used to predict species’ range shifts under climate change. However, climate variables often show high collinearity and most statistical approaches require the selection of one among strongly correlated variables. When causal relationships between species presence and climate parameters are unknown, variable selection is often arbitrary, or based on predictive performance under current conditions. While this should only marginally affect current range predictions, future distributions may vary considerably when climate parameters do not change in concert. We investigated this source of uncertainty using four highly correlated climate variables together with a constant set of landscape variables in order to predict current (2010) and future (2050) distributions of four mountain bird species in central Europe. Simulating different parameterization decisions, we generated a) four models including each of the climate variables singly, b) a model taking advantage of all variables simultaneously and c) an un‐weighted average of the predictions of a). We compared model accuracy under current conditions, predicted distributions under four scenarios of climate change, and – for one species – evaluated back‐projections using historical occurrence data. Although current and future variable‐correlations remained constant, and the models’ accuracy under contemporary conditions did not differ, future range predictions varied considerably in all climate change scenarios. Averaged models and models containing all climate variables simultaneously produced intermediate predictions; the latter, however, performed best in back‐projections. This pattern, consistent across different modelling methods, indicates a benefit from including multiple climate predictors in ambiguous situations. Variable selection proved to be an important source of uncertainty for future range predictions, difficult to control using contemporary information. Small, but diverging changes of climate variables, masked by constant overall correlation patterns, can cause substantial differences between future range predictions which need to be accounted for, particularly when outcomes are intended for conservation decisions.  相似文献   

2.
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio‐climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs “hindcasting” of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species‐specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white‐beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time‐scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.  相似文献   

3.
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12‐fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change.  相似文献   

4.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

5.
Aim We consider three questions. (1) How different are the predicted distribution maps when climate‐only and climate‐plus‐terrain models are developed from high‐resolution data? (2) What are the implications of differences between the models when predicting future distributions under climate change scenarios, particularly for climate‐only models at coarse resolution? (3) Does the use of high‐resolution data and climate‐plus‐terrain models predict an increase in the number of local refugia? Location South‐eastern New South Wales, Australia. Methods We developed two species distribution models for Eucalyptus fastigata under current climate conditions using generalized additive modelling. One used only climate variables as predictors (mean annual temperature, mean annual rainfall, mean summer rainfall); the other used both climate and landscape (June daily radiation, topographic position, lithology, nutrients) variables as predictors. Predictions of the distribution under current climate and climate change were then made for both models at a pixel resolution of 100 m. Results The model using climate and landscape variables as predictors explained a significantly greater proportion of the deviance than the climate‐only model. Inclusion of landscape variables resulted in the prediction of much larger areas of existing optimal habitat. An overlay of predicted future climate on the current climate space indicated that extrapolation of the statistical models was not occurring and models were therefore more robust. Under climate change, landscape‐defined refugia persisted in areas where the climate‐only model predicted major declines. In areas where expansion was predicted, the increase in optimal habitat was always greater with landscape predictors. Recognition of extensive optimal habitat conditions and potential refugia was dependent on the use of high‐resolution landscape data. Main conclusions Using only climate variables as predictors for assessing species responses to climate change ignores the accepted conceptual model of plant species distribution. Explicit statements justifying the selection of predictors based on ecological principles are needed. Models using only climate variables overestimate range reduction under climate change and fail to predict potential refugia. Fine‐scale‐resolution data are required to capture important climate/landscape interactions. Extrapolation of statistical models to regions in climate space outside the region where they were fitted is risky.  相似文献   

6.
The spatial scale at which climate and species’ occupancy data are gathered, and the resolution at which ecological models are run, can strongly influence predictions of species performance and distributions. Running model simulations at coarse rather than fine spatial resolutions, for example, can determine if a model accurately predicts the distribution of a species. The impacts of spatial scale on a model's accuracy are particularly pronounced across mountainous terrain. Understanding how these discrepancies arise requires a modelling approach in which the underlying processes that determine a species’ distribution are explicitly described. Here we use a process‐based model to explore how spatial resolution, topography and behaviour alter predictions of a species thermal niche, which in turn constrains its survival and geographic distribution. The model incorporates biophysical equations to predict the operative temperature (Te), thermal‐dependent performance and survival of a typical insect, with a complex life‐cycle, in its microclimate. We run this model with geographic data from a mountainous terrain in South Africa using climate data at three spatial resolutions. We also explore how behavioural thermoregulation affects predictions of a species performance and survival by allowing the animal to select the optimum thermal location within each coarse‐grid cell. At the regional level, coarse‐resolution models predicted lower Te at low elevations and higher Te at high elevations than models run at fine‐resolutions. These differences were more prominent on steep, north‐facing slopes. The discrepancies in Te in turn affected estimates of the species thermal niche. The modelling framework revealed how spatial resolution and topography influence predictions of species distribution models, including the potential impacts of climate change. These systematic biases must be accounted for when interpreting the outputs of future modelling studies, particularly when species distributions are predicted to shift from uniform to topographically heterogeneous landscapes.  相似文献   

7.
Understanding the impact of past climatic events on species may facilitate predictions of how species will respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica over the entire species range (northwestern Europe). Using a recently developed analytical framework that employs ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically suitable range at the last glacial maximum (LGM) c . 21 000 years ago. Ecological niche modelling predicted two suitable areas at the LGM within the present species range. Phylogeographic model selection on a COI mitochondrial DNA data set confirmed that R. balthica most likely spread from these two disjunct refuges after the LGM. The match observed between the potential range of the species at the LGM given its present climatic requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche conservatism in R. balthica , thus allowing to predict the future range. The subsequent projection of the potential range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a dramatic loss of areas currently occupied in France, western Great Britain and southern Germany.  相似文献   

8.

Aim

When modelling the distribution of animals under current and future conditions, both their response to environmental constraints and their resources’ response to these environmental constraints need to be taken into account. Here, we develop a framework to predict the distribution of large herbivores under global change, while accounting for changes in their main resources. We applied it to Rupicapra rupicapra, the chamois of the European Alps.

Location

The Bauges Regional Park (French Alps).

Methods

We built sixteen plant functional groups (PFGs) that account for the chamois’ diet (estimated from sequenced environmental DNA found in the faeces), climatic requirements, dispersal limitations, successional stage and interaction for light. These PFGs were then simulated using a dynamic vegetation model, under current and future climatic conditions up to 2100. Finally, we modelled the spatial distribution of the chamois under both current and future conditions using a point‐process model applied to either climate‐only variables or climate and simulated vegetation structure variables.

Results

Both the climate‐only and the climate and vegetation models successfully predicted the current distribution of the chamois species. However, when applied into the future, the predictions differed widely. While the climate‐only models predicted an 80% decrease in total species occupancy, including vegetation structure and plant resources for chamois in the model provided more optimistic predictions because they account for the transient dynamics of the vegetation (?20% in species occupancy).

Main conclusions

Applying our framework to the chamois shows that the inclusion of ecological mechanisms (i.e., plant resources) produces more realistic predictions under current conditions and should prove useful for anticipating future impacts. We have shown that discounting the pure effects of vegetation on chamois might lead to overpessimistic predictions under climate change. Our approach paves the way for improved synergies between different fields to produce biodiversity scenarios.
  相似文献   

9.
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.  相似文献   

10.
Many species are shifting their distributions due to climate change and to increasing international trade that allows dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture. Species distribution modelling may help to predict potential changes in pest distributions. However, these modelling strategies are subject to large uncertainties coming from different sources. Here we used the case of the tomato red spider mite (Tetranychus evansi), an invasive pest that affects some of the most important agricultural crops worldwide, to show how uncertainty may affect forecasts of the potential range of the species. We explored three aspects of uncertainty: (1) species prevalence; (2) modelling method; and (3) variability in environmental responses between mites belonging to two invasive clades of T. evansi. Consensus techniques were used to forecast the potential range of the species under current and two different climate change scenarios for 2080, and variance between model projections were mapped to identify regions of high uncertainty. We revealed large predictive variations linked to all factors, although prevalence had a greater influence than the statistical model once the best modelling strategies were selected. The major areas threatened under current conditions include tropical countries in South America and Africa, and temperate regions in North America, the Mediterranean basin and Australia. Under future scenarios, the threat shifts towards northern Europe and some other temperate regions in the Americas, whereas tropical regions in Africa present a reduced risk. Analysis of niche overlap suggests that the current differential distribution of mites of the two clades of T. evansi can be partially attributed to environmental niche differentiation. Overall this study shows how consensus strategies and analysis of niche overlap can be used jointly to draw conclusions on invasive threat considering different sources of uncertainty in species distribution modelling.  相似文献   

11.
Pioneering efforts to predict shifts in species distribution under climate change used simple models based on the correlation between contemporary environmental factors and distributions. These models make predictions at coarse spatial scales and assume the constancy of present correlations between environment and distribution. Adaptive management of climate change impacts requires models that can make more robust predictions at finer spatio-temporal scales by accounting for processes that actually affect species distribution on heterogeneous landscapes. Mechanistic models of the distribution of both species and vegetation types have begun to emerge to meet these needs. We review these developments and highlight how recent advances in our understanding of relationships among the niche concept, species diversity and community assembly point the way towards more effective models for the impacts of global change on species distribution and community diversity.  相似文献   

12.
Aim Theoretical work suggests that species’ ecological niches should remain relatively constant over long‐term ecological time periods, but empirical tests are few. We present longitudinal studies of 23 extant mammal species, modelling ecological niches and predicting geographical distributions reciprocally between the Last Glacial Maximum and present to test this evolutionary conservatism. Location This study covered distributional shifts in mammal species across the lower 48 states of the United States. Methods We used a machine‐learning tool for modelling species’ ecological niches, based on known occurrences and electronic maps summarizing ecological dimensions, to assess the ability of ecological niches as modelled in one time period to predict the geographical distribution of the species in another period, and vice versa. Results High intertemporal predictivity between niche models and species’ occurrences indicate that niche conservatism is widespread among the taxa studied, particularly when statistical power is considered as a reason for failure of reciprocal predictions. Niche projections to the present for 8 mammal taxa that became extinct at the end of the Pleistocene generally increased in area, and thus do not support the hypothesis of niche collapse as a major driving force in their extinction. Main conclusions Ecological niches represent long‐term stable constraints on the distributional potential of species; indeed, this study suggests that mammal species have tracked consistent climate profiles throughout the drastic climate change events that marked the end of the Pleistocene glaciations. Many current modelling efforts focusing on anticipating climate change effects on species’ potential geographical distributions will be bolstered by this result — in essence, the first longitudinal demonstration of niche conservatism.  相似文献   

13.
Aim Our aim was to understand the processes that have shaped the present‐day distribution of the freshwater limpet Ancylus fluviatilis sensu stricto in order to predict the consequences of global climate change for the geographical range of this species. Location North‐western Europe. Methods We sampled populations of A. fluviatilis sensu stricto over the entire range of the species (north‐western Europe) and sequenced 16S ribosomal RNA (16S) and cytochrome oxidase subunit I (COI) mitochondrial fragments to perform phylogenetic and phylogeographical analyses. Climatic niche modelling allowed us to infer the climatic preferences of the species. A principal components analysis identified the most important climatic factors explaining the actual range of A. fluviatilis. We also identified which climatic factor was the most limiting at range margins, and predicted the species’ geographical range under a climate change scenario [Community Climate Model 3 (CCM3)]. Results By means of the phylogeographical analysis, we infer that A. fluviatilis sensu stricto occupied northern refuges during the Last Glacial Maximum. We show that the climatic preferences of Baltic populations are significantly different from those of Central European populations. The projection of the occupied area under the CCM3 climate model predicts a moderate poleward shift of the northern range limits, but a dramatic loss of areas currently occupied, for instance in northern Germany and in southern Great Britain. Main conclusions The post‐glacial range dynamics of A. fluviatilis are not governed by niche conservatism. Therefore, we must be cautious about bioclimatic model predictions: the expected impact of climate change could be tempered by the adaptive potential this species has already shown in its evolutionary history. Thus, modelling approaches should rather be seen as conservative forecasts of altered species ranges as long as the adaptive potential of the organisms in question cannot be predicted.  相似文献   

14.
Aim To assess the effect of local adaptation and phenotypic plasticity on the potential distribution of species under future climate changes. Trees may be adapted to specific climatic conditions; however, species range predictions have classically been assessed by species distribution models (SDMs) that do not account for intra‐specific genetic variability and phenotypic plasticity, because SDMs rely on the assumption that species respond homogeneously to climate change across their range, i.e. a species is equally adapted throughout its range, and all species are equally plastic. These assumptions could cause SDMs to exaggerate or underestimate species at risk under future climate change. Location The Iberian Peninsula. Methods Species distributions are predicted by integrating experimental data and modelling techniques. We incorporate plasticity and local adaptation into a SDM by calibrating models of tree survivorship with adaptive traits in provenance trials. Phenotypic plasticity was incorporated by calibrating our model with a climatic index that provides a measure of the differences between sites and provenances. Results We present a new modelling approach that is easy to implement and makes use of existing tree provenance trials to predict species distribution models under global warming. Our results indicate that the incorporation of intra‐population genetic diversity and phenotypic plasticity in SDMs significantly altered their outcome. In comparing species range predictions, the decrease in area occupancy under global warming conditions is smaller when considering our survival–adaptation model than that predicted by a ‘classical SDM’ calibrated with presence–absence data. These differences in survivorship are due to both local adaptation and plasticity. Differences due to the use of experimental data in the model calibration are also expressed in our results: we incorporate a null model that uses survival data from all provenances together. This model always predicts less reduction in area occupancy for both species than the SDM calibrated with presence–absence. Main conclusions We reaffirm the importance of considering adaptive traits when predicting species distributions and avoiding the use of occurrence data as a predictive variable. In light of these recommendations, we advise that existing predictions of future species distributions and their component populations must be reconsidered.  相似文献   

15.
Aim A broad suit of climate data sets is becoming available for use in predictive species modelling. We compare the efficacy of using interpolated climate surfaces [Center for Resource and Environmental Studies (CRES) and Climate Research Unit (CRU)] or high‐resolution model‐derived climate data [Division of Atmospheric Research limited‐area model (DARLAM)] for predictive species modelling, using tick distributions from sub‐Saharan Africa. Location The analysis is restricted to sub‐Saharan Africa. The study area was subdivided into 3000 grids cells with a resolution of 60 × 60 km. Methods Species distributions were predicted using an established multivariate climate envelope modelling approach and three very different climate data sets. The recorded variance in the climate data sets was quantified by employing omnidirectional variograms. To further compare the interpolated tick distributions that flowed from using three climate data sets, we calculated true positive (TP) predictions, false negative (FN) predictions as well as the proportional overlaps between observed and modelled tick distributions. In addition, the effect of tick data set size on the performance of the climate data sets was evaluated by performing random draws of known tick distribution records without replacement. Results The predicted distributions were consistently wider ranging than the known records when using any of the three climate data sets. However, the proportional overlap between predicted and known distributions varied as follows: for Rhipicephalus appendiculatus Neumann (Acari: Ixodidae), these were 60%, 60% and 70%; for Rhipicephalus longus Neumann (Acari: Ixodidae) 60%, 57% and 75%; for Rhipicephalus zambeziensis Walker, Norval & Corwin (Acari: Ixodidae) 57%, 51% and 62%, and for Rhipicephalus capensis Koch (Acari: Ixodidae) 70%, 60% and 60% using the CRES, CRU and DARLAM climate data sets, respectively. All data sets were sensitive to data size but DARLAM performed better when using smaller species data sets. At a 20% data subsample level, DARLAM was able to capture more than 50% of the known records and captured more than 60% of known records at higher subsample levels. Main conclusions The use of data derived from high‐resolution nested climate models (e.g. DARLAM) provided equal or even better species distribution modelling performance. As the model is dynamic and process based, the output data are available at the modelled resolution, and are not hamstrung by the sampling intensity of observed climate data sets (c. one sample per 30,000 km2 for Africa). In addition, when exploring the biodiversity consequences of climate change, these modelled outputs form a more useful basis for comparison with modelled future climate scenarios.  相似文献   

16.
Stockman et al. (2006 ) found that ecological niche models built using DesktopGARP ‘failed miserably’ to predict trapdoor spider (genus Promyrmekiaphila) distributions in California. This apparent failure of GARP (Genetic Algorithm for Rule‐Set Production) was actually a failure of the authors’ methods, that is, attempting to build ecological niche models using single data points. In this paper, we present a re‐analysis of their original data using standard methods with the data appropriately partitioned into training/testing subsets. This re‐evaluation generated accurate distributional predictions that we contrast with theirs. We address the consequences of model‐building using single data points and the need for a foundational understanding of the principles of ecological niche modelling.  相似文献   

17.
18.
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial–interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid‐Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross‐validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm‐temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum‐Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing.  相似文献   

19.
Aim  To test how well species distributions and abundance can be predicted following invasion and climate change when using only species distribution and abundance data to estimate parameters.
Location  Models were developed for the species' native range in the Americas and applied to Australia.
Methods  We developed a predictive model for an invasive neotropical shrub ( Parkinsonia aculeata) using a popular ecophysiological bioclimatic modelling technique (CLIMEX) fitted against distribution and abundance data in the Americas. The effect of uncertainty in model parameter estimates on predictions in Australia was tested. Alternative data sources were used when model predictions were sensitive to uncertainty in parameter estimates. The resulting best-fit model was run under two climate change scenarios.
Results  Of the 19 parameters used, 9 could not be fitted using data from the native range. However, only parameters that lowered temperature or increased moisture requirements for growth noticeably altered the model prediction in Australia. Differences in predictions were dramatic, and reflect climates in Australia that were not represented in the Americas (novel climates). However, these poorly fitted parameters could be fitted post hoc using alternative data sources prior to predicting responses to climate change.
Conclusions  Novel climates prevented the development of a predictive model which relied only on native-range distribution and abundance data because certain parameters could not be fitted. In fact, predictions were more sensitive to parameter uncertainty than to climate change scenarios. Where uncertainty in parameter estimates affected predictions, it could be addressed through the inclusion of alternative data sources. However, this may not always be possible, for example in the absence of post-invasion data.  相似文献   

20.
Ecological niche models, or species distribution models, have been widely used to identify potentially suitable areas for species in future climate change scenarios. However, there are inherent errors to these models due to their inability to evaluate species occurrence influenced by non‐climatic factors. With the intuit to improve the modelling predictions for a bromeliad‐breeding treefrog (Phyllodytes melanomystax, Hylidae), we investigate how the climatic suitability of bromeliads influences the distribution model for the treefrog in the context of baseline and 2050 climate change scenarios. We used point occurrence data on the frog and the bromeliad (Vriesea procera, Bromeliaceae) to generate their predicted distributions based on baseline and 2050 climates. Using a consensus of five algorithms, we compared the accuracy of the models and the geographic predictions for the frog generated from two modelling procedures: (i) a climate‐only model for P. melanomystax and V. procera; and (ii) a climate‐biotic model for P. melanomystax, in which the climatic suitability of the bromeliad was jointly considered with the climatic variables. Both modelling approaches generated strong and similar predictive power for P. melanomystax, yet climate‐biotic modelling generated more concise predictions, particularly for the year 2050. Specifically, because the predicted area of the bromeliad overlaps with the predictions for the treefrog in the baseline climate, both modelling approaches produce reasonable similar predicted areas for the anuran. Alternatively, due to the predicted loss of northern climatically suitable areas for the bromeliad by 2050, only the climate‐biotic models provide evidence that northern populations of P. melanomystax will likely be negatively affected by 2050.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号