首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Development of full-length hepatitis C virus (HCV) RNAs replicating efficiently and producing infectious cell-cultured virions, HCVcc, in hepatoma cells provides an opportunity to characterize immunogenic domains on viral envelope proteins involved in entry into target cells. A panel of immunoglobulin G1 human monoclonal antibodies (HMAbs) to three immunogenic conformational domains (designated A, B, and C) on HCV E2 glycoprotein showed that epitopes within two domains, B and C, mediated HCVcc neutralization, whereas HMAbs to domain A were all nonneutralizing. For the neutralizing antibodies to domain B (with some to conserved epitopes among different HCV genotypes), the inhibitory antibody concentration reducing HCVcc infection by 90%, IC90, ranged from 0.1 to 4 microg/ml. For some neutralizing HMAbs, HCVcc neutralization displayed a linear correlation with an antibody concentration between the IC50 and the IC90 while others showed a nonlinear correlation. The differences between IC50/IC90 ratios and earlier findings that neutralizing HMAbs block E2 interaction with CD81 suggest that these antibodies block different facets of virus-receptor interaction. Collectively, these findings support an immunogenic model of HCV E2 having three immunogenic domains with distinct structures and functions and provide added support for the idea that CD81 is required for virus entry.  相似文献   

3.
Neutralizing monoclonal antibodies directed against hog cholera virus (HCV) precipitated two HCV-encoded glycoproteins, HCV gp55 and HCV gp33. Immunoassay with bacterial fusion proteins and Western immunoblotting with extracts from infected cells revealed that the antibodies recognized only HCV gp55. Coprecipitation of HCV gp33 was shown to be due to intermolecular disulfide bridges. One of the antibodies also reacted with the major glycoprotein of another pestivirus, bovine viral diarrhea virus (BVDV). The analogous BVDV glycoproteins exhibited a distribution of cysteine residues which was almost identical to that of HCV gp55 and gp33. The two BVDV glycoproteins were also linked by disulfide bridges.  相似文献   

4.
5.
Variations in the amino acid sequence of RNA virus envelope glycoproteins can cause changes in their antigenicity and can alter the host-cell tropism of the virus and the degree of virulence which it exhibits. Such changes may alter the course and outcome of viral diseases, either directly because of changes in the biological properties of the glycoproteins or indirectly through effects on immune surveillance and vaccine efficacy. The nature and extent of glycosylation of the surface glycoproteins of RNA viruses have also been implicated in such phenotypic alterations. It follows therefore that the 'plasticity' of the viral genome and the host-encoded glycosylation machinery combine to create populations of highly diverse viruses. This diversity is considered to be responsible for survival of these viruses in a variety of biological niches and for their ability to overcome the inhibitory effects of neutralizing antibodies and antiviral agents. In this article we discuss the implications of the inter-relationship between these two mechanisms for the generation of diversity.  相似文献   

6.
7.
The substantial differences between trypanosomal and leishmanial DNA topoisomerase IB concerning to their homologues in mammals have provided a new lead in the study of the structural determinants that can be effectively targeted. Leishmania donovani, the causative agent of visceral leishmaniasis, contains an unusual heterodimeric DNA topoisomerase IB. The catalytically active enzyme consists of a large subunit (LdTopIL), which contains the non-conserved N-terminal end and the phylogenetically conserved "core" domain, and of a small subunit (LdTopIS) which harbors the C-terminal region with the characteristic tyrosine residue in the active site. Heterologous co-expression of LdTopIL and LdTopIS genes in a topoisomerase I deficient yeast strain, reconstitutes a fully functional enzyme LdTopIL/S which can be used for structural studies. An approach by combinatorial cloning of deleted genes encoding for truncated versions of both subunits was used in order to find out structural insights involved in enzyme activity or protein-protein interaction. The role played by the non-conserved N-terminal extension of LdTopIL in both relaxation activity and CPT sensitivity has been examined co-expressing the full-length LdTopIS and a fully active LdTopIDeltaS deletion with several deletions of LdTopIL lacking growing sequences of the N-terminal end. The sequential deletion study shows that the first 26 amino acids placed at the N-terminal end and a variable region comprised between Ala548 to end of the C-terminal extension of LdTopIL were enzymatically dispensable. Altogether this combinatorial approach provides important structural insights of the regions involved in relaxation activity and for understanding the atypical structure of this heterodimeric enzyme.  相似文献   

8.
We have studied the binding and interaction of the peptide E1FP with various model membranes. E1FP is derived from the amino acid segment 274-291 of the hepatitis C virus envelope glycoprotein E1, which was previously proposed to host the peptide responsible for fusion to target membranes. In the present study we addressed the changes which take place upon E1FP binding in both the peptide and the phospholipid bilayer, respectively, through a series of complementary experiments. We show that peptide E1FP binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane and interacts preferentially with cholesterol. The capability of modifying the biophysical properties of model membranes supports its role in HCV-mediated membrane fusion and suggests that the mechanism of membrane fusion elicited by class I and II fusion proteins might be similar.  相似文献   

9.
An alpha beta heterodimer of the F1-ATPase of Rhodospirillum rubrum was isolated by extraction of chromatophores with LiCl. Each alpha beta heterodimer contains one tightly bound ADP, which is released upon removal of medium Mg2+. The dimer can be reversibly dissociated by removal of Mg(2+)-ions. The alpha beta heterodimer restores both ATP-synthetic and -hydrolytic activities to LiCl-treated chromatophores, saturation being achieved at approximately 2 mmol alpha beta.mol BChl-1. The heterodimer itself hydrolyses Mg-ATP with an activity distinct from RF1, being unaffected by azide or sulphite ions. The Vmax and Km (ATP) for this Mg(2+)-dependent activity were 110 +/- 10 nmol.min-1.mg protein-1 and 100 +/- 30 microM, respectively. The Km did not differ significantly from that of RF1.  相似文献   

10.
本研究构建丙型肝炎病毒(HCV)糖蛋白E2的N-糖基化位点定点突变体。采用高保真性的Pfx DNA聚合酶,设计两对引物,分别引入两个突变位点,通过PCR体外定点突变,使E2第535、583位核苷酸由A突变为T,从而使AAC编码的天冬酰氨突变为TAC编码的酪氨酸,使得N-糖苷化位点NNT、NST突变为YNT、YST.结果得到两个单位点以及一个双位点突变体,并将突变型E2连接到真核表达载体peDNA3.1(-)/Myc—HisB上。成功获得的3个HCVE2糖蛋白糖基化位点定点突变体,为进一步进行HCVE2糖蛋白糖基化位点与分子伴侣之间的相互关系以及突变体对机体的免疫功能的影响的研究奠定了基础。  相似文献   

11.
The TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution. Tim9 and Tim10 bound to one another with submicromolar affinity in equimolar amounts and assembled in a stable, significantly extended complex that was indistinguishable from the native mitochondrial TIM10 complex. Importantly, the reconstituted TIM10 complex is functional because it bound to the physiological substrate ADP/ATP carrier and displayed chaperone activity in refolding the model substrate firefly luciferase. These data demonstrate that the individual subunits can exist as independent, dynamically self-associating proteins. Assembly into the thermodynamically stable hexameric complex is necessary for the TIM10 chaperone function.  相似文献   

12.
The ability of cDNAs encoding the human platelet glycoprotein IIbIIIa to be expressed and assembled into a functional integrin receptor was assessed by transient transfection into a human cell line. Transfection of full length cDNAs resulted in synthesis of high levels of integrin subunits which appear to be stable within the cell for several days. Coexpression of both subunits resulted in a proteolytically processed form of GPIIb that associated with GPIIIa as a heterodimeric complex as the cell surface. Transport to the cell surface required association of these subunits with each other or with endogenous integrin subunits. When expressed alone, the GPIIb subunit remained intracellular, while the GPIIIa subunit was found to complex with endogenous proteins and was mobilized to the cell surface. The GPIIbIIIa receptor complex facilitated attachment of cells to known ligands for GPIIbIIIa: fibrinogen, vitronectin, and von Willebrand factor. This adhesion was sensitive to inhibition by the peptide GRGDV and the monoclonal antibody AP2, known inhibitors of platelet aggregation  相似文献   

13.
Microfibril-associated glycoprotein 2 (MAGP2) is a secreted protein associated with multiple cellular activities including the organization of elastic fibers in the extracellular matrix (ECM), angiogenesis, as well as regulating Notch and integrin signaling. Importantly, increases in MAGP2 positively correlate with poor prognosis for some ovarian cancers. It has been assumed that full-length MAGP2 is responsible for all reported effects; however, here we show MAGP2 is a substrate for the proprotein convertase (PC) family of endoproteases. Proteolytic processing of MAGP2 by PC cleavage could serve to regulate secretion and thus, activity and function as reported for other extracellular and cell-surface proteins. In support of this idea, MAGP2 contains an evolutionarily conserved PC consensus cleavage site, and amino acid sequencing of a newly identified MAGP2 C-terminal cleavage product confirmed functional PC cleavage. Additionally, mutagenesis of the MAGP2 PC consensus cleavage site or treatment with PC inhibitors prevented MAGP2 proteolytic processing. Finally, both cleaved and uncleaved MAGP2 were detected extracellularly and MAGP2 secretion appeared independent of PC cleavage, suggesting that PC processing occurs mainly outside the cell. Our characterization of alternative forms of MAGP2 present in the extracellular space not only enhances diversity of this ECM protein but also provides a previously unrecognized molecular mechanism for regulation of MAGP2 biological activity.  相似文献   

14.
Core protein is one of the most conserved and immunogenic of the hepatitis C virus proteins. Several pieces of experimental evidence suggest its ability for formation of virus like particles alone or in association with other viral proteins in mammalian or yeast cells with great similarity to those detected in patient sera and liver extract. In this work we report an Escherichia coli-derived truncated hepatitis C core protein that is able to aggregate. SDS-PAGE and size exclusion chromatography patterns bring to mind the aggregation of monomers of recombinant protein Co.120. The Co.120 protein migrated with buoyant density of 1.28 g/cm(3) when analyzed using CsCl density gradient centrifugation. Spherical structures with an average diameter of 30 nm were observed using electron microscopy. We report here that VLPs are generated when the first 120 aa of HCV core protein are expressed in E. coli.  相似文献   

15.
Import of proteins into the nucleus proceeds through nuclear pore complexes and is largely mediated by nuclear transport receptors of the importin beta family that use direct RanGTP-binding to regulate the interaction with their cargoes. We investigated nuclear import of the linker histone H1 and found that two receptors, importin beta (Impbeta) and importin 7 (Imp7, RanBP7), play a critical role in this process. Individually, the two import receptors bind H1 weakly, but binding is strong for the Impbeta/Imp7 heterodimer. Consistent with this, import of H1 into nuclei of permeabilized mammalian cells requires exogenous Impbeta together with Imp7. Import by the Imp7/Impbeta heterodimer is strictly Ran dependent, the Ran-requiring step most likely being the disassembly of the cargo-receptor complex following translocation into the nucleus. Disassembly is brought about by direct binding of RanGTP to Impbeta and Imp7, whereby the two Ran-binding sites act synergistically. However, whereas an Impbeta/RanGTP interaction appears essential for H1 import, Ran-binding to Imp7 is dispensable. Thus, Imp7 can function in two modes. Its Ran-binding site is essential when operating as an autonomous import receptor, i.e. independently of Impbeta. Within the Impbeta/Imp7 heterodimer, however, Imp7 plays a more passive role than Impbeta and resembles an import adapter.  相似文献   

16.
S. S. Tate 《Amino acids》1996,11(2):209-224
Summary Cystinuria, one of the most common genetic disorders, is characterized by excessive excretion of cystine and basic amino acids in urine. The low solubility of cystine results in formation of kidney stones which can eventually lead to renal failure. Three types of cystinurias have been described. All involve defects in a high-affinity transport system for cystine in the brush border membranes of kidney and intestinal epithelial cells. The molecular properties of proteins involved in epithelial cystine transport are incompletely understood. A protein (NBAT, neutral and basic amino acid transporter), initially cloned by us from rat kidney and shown to be localized in the renal and intestinal brush border membranes, has been implicated in this transport, and mutations in human NBAT gene have been found in several cystinurics, making it a prime candidate for a cystinuria gene. However, mutations in NBAT were found only in Type I cystinurics and not in Types II and III suggesting that defects in other, as yet uncharacterized, genes may also be involved. NBAT has an unusual (for an amino acid transporter) membrane topology. We proposed that the protein contains four membrane-spanning domains, a model disputed by other investigators. We subsequently obtained experimental data consistent with a four membrane-spanning domain model. Furthermore, recently we showed that kidney and intestinal NBAT (85kDa) is associated with another brush border membrane protein (about 50kDa) and have proposed that the heterodimer represents the minimal functional unit of the high-affinity cystine transporter in these membranes. These findings raise the tantalizing possibilities that defects in the NBAT-associated protein might account for cystinurias in individuals with normal NBAT gene (such as the Types II and III cystinurics).  相似文献   

17.
Varicella-zoster virus (VZV) is a medically important alphaherpesvirus that induces fusion of the virion envelope and the cell membrane during entry, and between cells to form polykaryocytes within infected tissues during pathogenesis. All members of the Herpesviridae, including VZV, have a conserved core fusion complex composed of glycoproteins, gB, gH and gL. The ectodomain of the primary fusogen, gB, has five domains, DI-V, of which DI contains the fusion loops needed for fusion function. We recently demonstrated that DIV is critical for fusion initiation, which was revealed by a 2.8Å structure of a VZV neutralizing mAb, 93k, bound to gB and mutagenesis of the gB-93k interface. To further assess the mechanism of mAb 93k neutralization, the binding site of a non-neutralizing mAb to gB, SG2, was compared to mAb 93k using single particle cryogenic electron microscopy (cryo-EM). The gB-SG2 interface partially overlapped with that of gB-93k but, unlike mAb 93k, mAb SG2 did not interact with the gB N-terminus, suggesting a potential role for the gB N-terminus in membrane fusion. The gB ectodomain structure in the absence of antibody was defined at near atomic resolution by single particle cryo-EM (3.9Å) of native, full-length gB purified from infected cells and by X-ray crystallography (2.4Å) of the transiently expressed ectodomain. Both structures revealed that the VZV gB N-terminus (aa72-114) was flexible based on the absence of visible structures in the cryo-EM or X-ray crystallography data but the presence of gB N-terminal peptides were confirmed by mass spectrometry. Notably, N-terminal residues 109KSQD112 were predicted to form a small α-helix and alanine substitution of these residues abolished cell-cell fusion in a virus-free assay. Importantly, transferring the 109AAAA112 mutation into the VZV genome significantly impaired viral propagation. These data establish a functional role for the gB N-terminus in membrane fusion broadly relevant to the Herpesviridae.  相似文献   

18.
Recent studies identified signal peptidase complex subunit 1 (SPCS1) as a proviral host factor for Flaviviridae viruses, including HCV. One of the SPCS1’s roles in flavivirus propagation was attributed to its regulation of signal peptidase complex (SPC)-mediated processing of flavivirus polyprotein, especially C-prM junction. However, whether SPCS1 also regulates any SPC-mediated processing sites within HCV polyprotein remains unclear. In this study, we determined that loss of SPCS1 specifically impairs the HCV E2-p7 processing by the SPC. We also determined that efficient separation of E2 and p7, regardless of its dependence on SPC-mediated processing, leads to SPCS1 dispensable for HCV assembly These results suggest that SPCS1 regulates HCV assembly by facilitating the SPC-mediated processing of E2-p7 precursor. Structural modeling suggests that intrinsically delayed processing of the E2-p7 is likely caused by the structural rigidity of p7 N-terminal transmembrane helix-1 (p7/TM1/helix-1), which has mostly maintained membrane-embedded conformations during molecular dynamics (MD) simulations. E2-p7-processing-impairing p7 mutations narrowed the p7/TM1/helix-1 bending angle against the membrane, resulting in closer membrane embedment of the p7/TM1/helix-1 and less access of E2-p7 junction substrate to the catalytic site of the SPC, located well above the membrane in the ER lumen. Based on these results we propose that the key mechanism of action of SPCS1 in HCV assembly is to facilitate the E2-p7 processing by enhancing the E2-p7 junction site presentation to the SPC active site. By providing evidence that SPCS1 facilitates HCV assembly by regulating SPC-mediated cleavage of E2-p7 junction, equivalent to the previously established role of this protein in C-prM junction processing in flavivirus, this study establishes the common role of SPCS1 in Flaviviridae family virus propagation as to exquisitely regulate the SPC-mediated processing of specific, suboptimal target sites.  相似文献   

19.
Assembly of the F1 portion of the proton-translocating ATPase of Escherichia coli was examined in vivo. Analysis of strains lacking genes which specify the Fo polypeptides a, b, and c showed that the F1 subunits were able to assemble into a complex in the absence of the Fo subunits. In addition we have investigated the effects of mutations in the individual genes which specify the F1 polypeptides on the assembly process. Mutations of the uncA(alpha), uncG(gamma), or uncD(beta) genes result in a defective assembly of the F1 complex. In contrast, mutations in the uncH(delta) or uncC(epsilon) genes did not prevent assembly of the core alpha beta gamma complex. In these cases, however, the partial F1 complexes were incapable of restoring energy-linked functions to F1-depleted membranes.  相似文献   

20.
We have investigated both structural and functional assembly of the F0 portion of the Escherichia coli proton-translocating ATPase in vivo. Fractionation of E. coli minicells containing plasmids which code for parts of the unc operon shows that each of the F0 peptides a, b, and c insert into the cytoplasmic membrane independent of each other and without the polypeptides which form the F1 portion of the complex alpha, beta, gamma, delta, and epsilon. Assays of membrane energization indicate that, while formation of a functional proton channel requires the presence of all three F0 polypeptides a, b and c, they are not sufficient. Synthesis of both the alpha and beta subunits of the F1 are required for formation of a functional proton channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号