首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lipid transport in the hemolymph of Manduca sexta is facilitated by a high density lipophorin in the resting adult insect (HDLp-A, d approximately 1.109 g/ml) and by a low density lipophorin during flight (LDLp, d approximately 1.060 g/ml). Lipophorin presumably shuttles different lipids between sites of uptake or storage, and sites of utilization. In order to shuttle lipid, a lipid-depleted lipophorin should be able to reload with lipid. To test this hypothesis, we used HDLp-A particles that were artificially depleted of either phospholipid (d approximately 1.118 g/ml) or diacylglycerol (d approximately 1.187 g/ml) and subsequently radiolabeled in their protein moiety. Upon injection into adult moths, both particles shifted their density to that of native HDLp-A, indicating lipid loading. Also, upon subsequent injection of adipokinetic hormone, both particles shifted to a lower density (d approximately 1.060 g/ml) indicating diacylglycerol loading and conversion to LDLp. Both phospholipid and diacylglycerol loading were also studied using an in vitro system. The lipid-depleted particles were incubated with fat body that had been radiolabeled in either the phospholipid or the triacylglycerol fraction. Transfer of radiolabeled phospholipid and diacylglycerol from fat body to lipophorin was observed. During diacylglycerol loading, apoLp-III associated with lipophorin, whereas phospholipid loading occurred in the absence of apoLp-III. The results show the ability of lipid-depleted lipophorins to reload with lipid and therefore reaffirm the role of lipophorin as a reusable lipid shuttle.  相似文献   

2.
《Insect Biochemistry》1989,19(4):361-365
The release of lipophorin and total protein was examined from the fat body of nondiapause and diapause larvae of the southwestern corn borer, Diatraea grandiosella, incubated in vitro in Grace's medium. The characteristics of the released lipophorin were compared to those of the high-density lipophorin present in the hemolymph of nondiapause and diapause larvae. Over a 4 h incubation period, the fat body of nondiapause larvae released about 1.5 times more total protein and 2 times more lipophorin per mg dry weight than did that of diapause larvae. Lipophorin isolated from the medium in which fat bodies of nondiapause and diapause larvae had been incubated and from the plasma of nondiapause and diapause larvae had similar mean densities of 1.115, 1.112, 1.117 and 1.119 g/ml, respectively. Although the lipid classes detected in lipophorin isolated from the fat body incubation medium and hemolymph were identical, more polar lipids and less diacylglycerol were associated with lipophorin isolated from fat body incubation medium then were associated with lipophorin isolated from the hemolymph. Sterols accounted for about 11% of the total lipids of lipophorin isolated from the fat body incubation medium, whereas they accounted for about 20% of the total lipids of lipophorin from hemolymph. We conclude that the fat body of feeding nondiapause larvae and nonfeeding diapause larvae releases high-density lipophorin.  相似文献   

3.
Triatoma infestans hemolymph has 0.31 mg/ml of free fatty acids and 2.8 mg/ml of diacylglycerols. Almost all the diacylglycerols are transported by lipophorin whereas free fatty acids are carried by lipophorin and a very high density lipoprotein. The binding of cis-parinaric acid to lipophorin was employed to specify the free fatty acid binding properties of lipophorin. Lipophorin has 10 binding sites of high affinity (3 x 10(7)) and approximately 45 binding sites of low affinity (1 x 10(6)). The relative rate of tissue incorporation of free fatty acids and diacylglycerols was measured by injecting insects with hemolymph previously labeled in both, free fatty acids and diacylglycerols. In this way, the half-life of the hemolymph free fatty acids was estimated to be about 4 min. Based on this result and taking into account the content of free fatty acids and diacylglycerols in hemolymph, the incorporation of free fatty acids, expressed in moles of fatty acids, seems to be 3.4 times higher than that of diacylglycerols. This finding can be applied to other insects.  相似文献   

4.
The formation of low-density lipophorin (LDLp) in insect hemolymph, resulting from association of high-density lipophorin (HDLp) with both lipid and apolipophorin III, is considered to provide a reutilizable lipid shuttle for flight muscle energy supply. The changes in lipid and apolipoprotein composition of LDLp, isolated after flight activity, compared to that of HDLp in the hemolymph at rest, were studied in two evolutionary divergent insects, the hawkmoth Acherontia atropos and the migratory locust, Locusta migratoria. Using FPLC on Superose 6 prep grade as a novel technique to separate the apolipophorins of HDLp and LDLp, the ratio of apolipoprotein I, II, and III in HDLp of both species was demonstrated to be 1:1:1, whereas flight activity resulted in a ratio of 1:1:10 in LDLp. Injection of adipokinetic hormone into resting moths showed that, depending on the dose, the number of apolipophorin III molecules in LDLp can exceed that recovered after the physiological condition of flight. Analysis of the lipophorin lipids demonstrated that in addition to the considerable increase in diacylglycerol in the LDLp particle, which is consistent with the role LDLp in energy supply, particularly the hydrocarbons were increased compared to HDLp, rendering the mechanism of LDLp formation from HDLp even more complex.  相似文献   

5.
The density of lipophorin was determined in adult females of Rhodnius prolixus on different days after a meal. Several populations of lipophorins, differing in density but always in the range of HDL, were found in the hemolymph. The density of the major population was analyzed and a complex profile of density variation was found associated with the principal metabolic events in these insects digestion and oogenesis. During the initial three days after the blood meal, with the onset of the digestive process, the density of lipophorin decreased from 1.1185 g/l to 1.1095 g/l, associated with the transfer of lipids from midgut to the lipophorin particles. During the period of intense vitellogenesis and lipid uptake by the ovary, the lipophorin density started to increase and reached the value, 1.1322 g/l, and remained stable up to the end of oogenesis. As soon as the requirement of lipids to build up the oocytes ceased, the density of lipophorin decreased to its initial value associated with the transfer of lipids from fat body to lipophorin. Soon after the blood meal the midgut was the main source of lipids capable of replenishing the lipophorin particles, while the fat body assumed this function during the succeeding days and reached its maximum capacity around day 10, as estimated by the rate of lipid transfer. The principal lipids transferred were phospholipids and diacylglycerols. Except in the protein/lipid ratio no major changes were observed among different lipids isolated from lipophoin of different densities. Arch. Insect Biochem. Physiol. 35:301-313, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

6.
Lipophorin is a major lipoprotein that transports lipids in insects. In Rhodnius prolixus, it transports lipids from midgut and fat body to the oocytes. Analysis by thin‐layer chromatography and densitometry identified the major lipid classes present in the lipoprotein as diacylglycerol, hydrocarbons, cholesterol, and phospholipids (PLs), mainly phosphatidylethanolamine and phosphatidylcholine. The effect of preincubation at elevated temperatures on lipophorin capacity to deliver or receive lipids was studied. Transfer of PLs to the ovaries was only inhibited after preincubation of lipophorin at temperatures higher than 55°C. When it was pretreated at 75°C, maximal inhibition of phospholipid transfer was observed after 3‐min heating and no difference was observed after longer times, up to 60 min. The same activity was also obtained when lipophorin was heated for 20 min at 75°C at protein concentrations from 0.2 to 10 mg/ml. After preincubation at 55°C, the same rate of lipophorin loading with PLs at the fat body was still present, and 30% of the activity was observed at 75°C. The effect of temperature on lipophorin was also analyzed by turbidity and intrinsic fluorescence determinations. Turbidity of a lipophorin solution started to increase after preincubations at temperatures higher than 65°C. Emission fluorescence spectra were obtained for lipophorin, and the spectral area decreased after preincubations at 85°C or above. These data indicated no difference in the spectral center of mass at any tested temperature. Altogether, these results demonstrate that lipophorin from R. prolixus is very resistant to high temperatures.  相似文献   

7.
《Insect Biochemistry》1988,18(1):117-126
Flight activity or injection of the death's-head hawkmoth Acherontia atropos with locust synthetic adipokinetic hormone (AKH I) results in a dramatic increase in the concentration of hemolymph diacylglycerol which is carried by specific lipophorins. In resting hawkmoths diacylglycerols are associated with a high-density lipophorin (HDLp, density ∼1.13 g/ml) consisting of two major apolipophorins (apoLp-I and -II, mol. wt ∼240,000 and 70,000, respectively). During flight or after AKH injection the formation of a new low-density lipophorin is induced (LDLp, density ∼1.03 g/ml), exhibiting a much higher lipid loading and consisting of HDLp subunits and an additional subunit (apoLp-III, mol. wt approx. 20,000). This subunit is a regular constitutent of hemolymph proteins in resting hawkmoths and consists of two protein components with slightly different molecular weights. The component with the lowest molecular weight seems to be preferentially incorporated into the newly generated LDLp. In the resting situation the HDLp already contains some apoLp-III.In spite of some minor differences, the overall mechanism of lipophorin rearrangements upon flight activity in the hawkmoth appears to be very similar to the known systems established for both Locusta migratoria and Manduca sexta.  相似文献   

8.
Lipophorin of the larval honeybee, Apis mellifera L   总被引:2,自引:0,他引:2  
Most insects have a major lipoprotein species in the blood (hemolymph) that serves to transport fat from the midgut to the storage depots in fat body cells and from the fat body to peripheral tissues. The generic name lipophorin is used for this lipoprotein. In larvae of the honeybee, Apis mellifera, a lipophorin has been found with properties that correlate well with those of the only other lipophorin reported for an immature insect, that of the tobacco hornworm, Manduca sexta. The honeybee lipophorin (Mr = 530,000) has a density of 1.13 g/ml, contains approximately 41% lipid and 59% protein, and contains two apoproteins, apoLp-I, Mr = 250,000 and apoLp-II, Mr = 80,000, both of which are glycosylated. The lipids consist predominantly of polar lipids, of which phospholipids and diacylglycerols represent 60% of the total. When the intact lipophorin is treated with trypsin, apoLp-I is rapidly proteolyzed, while apoLp-II is resistant, indicating a difference in exposure of the two apoproteins to the aqueous environment. Honeybee apoLp-II cross-reacts with antibodies to M. sexta apoLp-II, but not to anti-M. sexta apoLp-I. No cross-reactivity of honeybee apoLp-I to anti-M. sexta apoLp-I was observed.  相似文献   

9.
In insects, lipids are stored in the fat body, mainly as triacylglycerol (TAG). In Rhodnius prolixus, a hematophagous hemipteran, lipids are accumulated after blood meal to be used later on. In adult females, at the second day after feeding, the amount of TAG was 57+/-17 microg/fat body, it increased almost five times and at fourth day it was 244+/-35 microg/fat body. TAG content remained constant until day 13, but it then decreased and, at day 20th it was very low (31+/-4.9 microg/fat body). Radiolabeled free fatty acid was used to follow lipid accumulation by the fat body, as it was previously shown that, in R. prolixus, injected free fatty acids associate with lipophorin, a major hemolymphatic lipoprotein. (3)H-palmitic acid was injected into the hemocoel of R. prolixus females. It disappeared from the hemolymph very rapidly, and radioactivity was incorporated by the fat body. Sixty minutes after injection, radioactivity in the fat body was found mainly in TAGs. The capacity of the fat body to incorporate fatty acids from the hemolymph varied according to the days after blood meal, and it was maximal around the fourth day. Lipophorin binding to specific sites in fat body membrane preparations also showed variation at different days. When membranes obtained from insects at the second, fifth and tenth days were compared, binding was highest at fifth day after feeding.  相似文献   

10.
Abstract The fatty acid (FA) compositions for total lipids from fat body, hemolymph and flight muscle of the armyworm moths, Mythirnna separata, at rest and after tethered flight for 1 h were determined by GC and GC-MS. The composition in these tissues comprises myristic acid (1%-2%), palmitic acid (more than 35%1, palmitoleic acid (9%-11%), stearic acid (less than 1%), oleic acid (about 32%), linoleic acid (12%-17%) and linolenic acid (3%-6%). After flight, FA level in the fat body, compared to that at rest, shows a significant decline at about 20 μg/mg tissue.h-1; the concentration of FAs in hemolymph rises evidently, but change of FA content in flight muscle appears to be small. From the changes of proportional composition of FAs in fat body, hemolymph and flight muscle, it is found that the FAs selectively utilized for flight in flight muscle are predominantly the palmitic acid and oleic acid.  相似文献   

11.
The reversible association of a low molecular weight hemolymph protein (mol wt 20,000 estimated by SDS-polyacrylamide gel electrophoresis) with lipophorin, following treatment with adipokinetic hormone (AKH), was demonstrated by density gradient ultracentrifugation and by specific precipitation of lipophorin from the hemolymph of resting and AKH-injected locusts. The injection of AKH also stimulated the loading of diacylglycerol from fat body by lipophorin and resulted in a lower density lipophorin ("activated lipophorin"). The activated lipophorin particles (diameter 21.7 +/- 3.0 nm, 15.8 to 33.6 nm) were larger and more heterogeneous in size than those of resting lipophorin (14.5 +/- 1.6 nm, 11.9 to 19.2 nm). A theoretical analysis based on the experimental data (e.g., density gradient profile, electron microscopic observation, and diacylglycerol content) suggests that very large lipophorin particles result from intermolecular fusion of the lipophorin molecules that are activated by AKH. Attempts to demonstrate the effect of AKH on the structure of lipophorin, in vitro, were unsuccessful.  相似文献   

12.
《Insect Biochemistry》1986,16(3):517-523
Lipoprotein lipase activity in flight muscle homogenates of Locusta migratoria was measured, using natural radiolabelled lipoproteins as substrates. The flight specific lipoprotein A+ (or low density lipophorin) stimulated lipoprotein lipase activity several-fold compared to the resting lipoprotein Ay (or high density lipophorin). However, with the high mol. wt lipoprotein fraction OAKH as a substrate, lipase activity was even doubled compared to lipoprotein A+. Lipase activity was not increased in flight muscle homogenates of insects which had flown. Neither adipokinetic hormone, nor octopamine had any direct effect on lipoprotein lipase activity. Aspects of hormonal regulation and apoprotein activation of the locust flight muscle lipoprotein lipase are discussed and compared with the model for vertebrate lipoprotein lipase.  相似文献   

13.
Lipophorin (Lp), either labeled in diacylglycerol moiety with [(3)H]-Palmitic acid or in phospholipid moiety with (32)Pi, was injected into Rhodnius prolixus females. Insects were induced to flight for different times. In just a few minutes of flight, the transfer of radioactivity to ovaries decreased, accompanied by its increase to flight muscles. After one hour of flight, Lp density was higher (1.132 g/mL) than before flight (1.116 g/mL). Lp purified from insects after flight was analyzed by gel filtration chromatography and a polyacrylamide gel pore limit electrophoresis. Both analyses demonstrated a decrease in Lp molecular mass after flight but no changes in apoLp-III amounts were observed. Time-course experiments showed that only 30 min of flight are required for the detection of changes in Lp density and molecular mass. About the same time of rest is necessary for Lp density and molecular mass to return to the baseline value. The lipid content from Lp particles, determined by high-performance thin-layer chromatography (HPTLC), showed a decrease in total lipids after flight. At the same time, an increase of many classes of lipids was observed in flight muscles except for triacylglycerol, which was reduced. The increase of flight muscle lipids was accompanied by a decrease of the ovaries lipid content. The insects subjected to daily exhaustive flight showed a significant decrease in total number of eggs produced. But insects subjected to a single exhaustive flight showed only a small reduction in total number of eggs. Lp density variation during the flight activity of Rhodnius prolixus females is discussed in association with physiological events such as oogenesis.  相似文献   

14.
Three species of bugs (Order: Hemiptera) belonging to different suborders and different families were investigated with respect to flight-related metabolism, and the neuropeptide hormones that regulate metabolism in Encosternum delegorguei, Locris arithmetica and Nezara viridula were characterised. The concentration of two potential metabolic fuels in the haemolymph of these bugs (at rest) revealed that lipids were more abundant than carbohydrates and that lipids increased significantly when the bugs performed extensive exercise (flight) and in the resting period following the aerobic activity. Carbohydrate levels declined during flight but recovered to the pre-flight level during a 1 h resting period post-flight. Further experiments with N. viridula revealed greater lipid accumulation in the haemolymph after a 10 min flight than after a 2 min flight and significant activation of glycogen phosphorylase was recorded in the fat body immediately after flight activity. Crude extracts of corpora cardiaca (CC) from L. arithmetica and E. delegorguei were both active in mobilising carbohydrates in the cockroach Periplaneta americana. In conspecific assays, only L. arithmetica CC extract had a significant hypertrehalosaemic effect, while CC extracts from both E. delegorguei and L. arithmetica were hyperlipaemic. By a combination of liquid chromatography and mass spectrometry two octapeptides known as Peram-CAH-I and Pyrap-AKH were identified from the spittle bug, L. arithmetica, and two octapeptides known as Panbo-RPCH and Schgr-AKH-II were identified from the edible inflated stink bug, E. delegorguei. Injection of Panbo-RPCH into E. delegorguei and into the green stink bug, N. viridula had no effect on circulating carbohydrates, although glycogen phosphorylase was activated in the fat body. The circulating lipid concentration in N. viridula did not change significantly under artificially induced hypertrehalosaemia, suggesting that lipids were not being used or mobilised.  相似文献   

15.
The mature flightless grasshopper Barytettix psolus shows a very small adipokinetic response when injected with extracts of its own corpora cardiaca, although the fat body contains enough lipid for a strong response. When these extracts were injected into Melanoplus differentialis, a grasshopper capable of flight, or the moth Manduca sexta, much stronger adipokinetic responses were observed. Upon analysis of B. psolus extracts by HPLC, two components with adipokinetic activity were obtained. The major component appears to be identical to locust adipokinetic hormone (AKH) I. Extracts of B. psolus corpora cardiaca also activated fat body glycogen phosphorylase in B. psolus. This activation, however, did not result in an increase in hemolymph sugar, probably because of low levels of glycogen in the fat body. B. psolus hemolymph contains a high-density lipophorin (HDLp) consisting of the apolipophorins (apoLp) I and II and lipid. Both apoproteins are glycosylated. The hemolymph also contains apoLp-III, although this apoprotein apparently does not associate with HDLp to form a low-density lipophorin (LDLp) following AKH or corpora cardiaca extract injections. When B. psolus lipophorin and AKH were injected into Schistocerca americana, lipophorin took up lipids and combined with apoLp-III, forming LDLp. ApoLp-III from B. psolus injected into S. americana can also form LDLp, demonstrating that the components are functional. A lipid transfer particle isolated from M. sexta and injected into B. psolus does not improve the adipokinetic response. Thus, it appears that the adipokinetic response of B. psolus is not deficient because of the lack of AKH or functional lipophorins, but may be caused by the lack of a full response to AKH by fat body or the deficiency in hemolymph of some as yet unknown factor.  相似文献   

16.
Many beetle species use proline and carbohydrates in a varying ratio to power flight. The degree of contribution of either fuel varies widely between species. In contrast, dung beetle species investigated, thus far, do not have any carbohydrate reserves and rely completely on proline to power energy-costly activities such as flight and, probably, walking and ball-rolling. While the fruit beetle, Pachnoda sinuata, uses proline and carbohydrates equally during flight, proline is solely oxidised during endothermic pre-flight warm-up, as well as during flight after prolonged starvation. Thus, proline seems to be the essential fuel for activity in beetles, even in flightless ones and in those that use proline in combination with carbohydrates; the latter can be completely substituted by proline in certain circumstances. It is apparent from the rapid decline of energy substrates in flight muscles and haemolymph after the onset of flight that mobilisation of stored fuels of the fat body is necessary for prolonged flight periods. This task is performed by AKH-type neuropeptides. In beetles, like in other insects, these peptides mobilise glycogen via activation of glycogen phosphorylase. They also stimulate proline synthesis from alanine and acetyl-CoA in the fat body. Acetyl-CoA is derived from the beta-oxidation of fatty acids and we propose that the neuropeptides activate triacylglycerol lipase.  相似文献   

17.
In insects, lipids are transported by a hemolymphatic lipoprotein, lipophorin. The binding of lipophorin to the fat body of the hematophagous insect Rhodnius prolixus was characterized in a fat body membrane preparation, obtained from adult females. For the binding assay, purified lipophorin was radiolabelled in the protein moiety (125I-HDLp), and it was shown that iodination did not affect the affinity of the membrane preparation for lipophorin. Under incubation conditions used, lipophorin binding to membranes achieved equilibrium after 40-60 min, but this time was longer when a low concentration of lipophorin was present in the medium. The capacity of the fat body membrane preparation to bind lipophorin was abolished when membranes were pre-treated with trypsin, and it was also affected by heat. When 125I-HDLp was incubated with increasing concentrations of membrane protein, corresponding increases in binding were observed. Lipophorin binding was sensitive to pH, and it was maximal between pH 6.0 and 7.0. The specific binding of lipophorin to the fat body membrane preparation was a saturable process, with a Kd of 2.1 +/- 0.4 x 10(-7)M and a maximal binding capacity of 289 +/- 88 ng lipophorin/microgram of membrane protein. Binding to the fat body membranes did not depend on calcium, but it was affected by ionic strength, being totally inhibited at high salt concentrations. Suramin also interfered with lipophorin binding and it was abolished in the presence of 2 mM suramin, but at concentrations of 0.05 and 0.1 mM it seemed to increase binding activity slightly. Fat body membrane preparation from Rhodnius prolixus was able to bind lipophorin from Manduca sexta larvae.  相似文献   

18.
In 12-h-starved larvae of the tobacco hornworm, Manduca sexta, fat body glycogen phosphorylase was quickly inactivated when insects were refed with normal diet and agar which contained 3% sucrose. Only the first 2 min of refeeding were necessary to induce enzyme inactivation. During this short period, larvae did not ingest enough sucrose to increase the hemolymph glucose concentration. This may indicate that the gut released a hormone(s) which directly or indirectly led to the inactivation of fat body glycogen phosphorylase. Inactivation of the enzyme could also be induced by injection of glucose (30 mg) into the hemolymph of starving M. sexta larvae suggesting that there may be separate control from a neuroendocrine site such as the brain or the corpora cardiaca. Trehalose was less effective. Bovine insulin (2 and 4 μg/starved larva) did not induce phosphorylase inactivation over 20 min or decrease hemolymph carbohydrate or lipid concentrations within 60 min. It is, therefore, necessary to screen insect tissues for substances which could bring about inactivation of fat body glycogen phosphorylase. © 1992 Wiley-Liss, Inc.  相似文献   

19.
Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The β subunit of the ATP synthase complex (β-ATPase) was identified as a lipophorin binding protein. β-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that β-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and β-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of β-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the β-ATPase antibody significantly reduced the transfer of [3H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-3H]-oleic acid, supporting the involvement of lipophorin-β-ATPase association in the transfer of lipids. In addition, the β-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that β-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus.  相似文献   

20.
In order to determine whether proline can be utilized as fuel during flight of Aedes aegypti, proline, alanine, and glutamine concentrations were monitored at 0, 30 and 60 min after flight using sugar-fed males and females, and blood meal-fed females. In sugar-fed and blood meal-fed females, flight lead to a significant decrease in proline and a significant increase in glutamine concentration in both hemolymph and thorax. Only during flight after a blood meal was a significant increase in the alanine concentration observed in hemolymph. After flight, the proline alanine and glutamine levels in the hemolymph and thorax from males did not change significantly. In addition, activities of enzymes related to amino acid metabolism were assayed in homogenates of cephalothorax and thorax from both sexes, and in fat body and midgut from females. In both sexes, the activities of all the enzymes studied were significantly higher in thorax than in cephalothorax. The levels of the enzymes involved in proline oxidation were higher in thorax than in fat body and midgut. These results suggest that proline can be used as an energy substrate for flight muscle of Ae. aegypti females. However, the elevation in glutamine levels observed in hemolymph and thorax after flight has not been reported in other insects that fuel flight using proline and may suggest an additional mechanism for shuttling ammonia between flight muscle and fat body is present in mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号