首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The ATPase activity of ArsA, the catalytic subunit of the plasmid-encoded, ATP-dependent extrusion pump for arsenicals and antimonials in Escherichia coli, is allosterically activated by arsenite or antimonite. Magnesium is essential for ATPase activity. To examine the role of Asp45, mutants were constructed in which Asp45 was changed to Glu, Asn, or Ala. Cells expressing these mutated arsA genes lost arsenite resistance to varying degrees. Purified D45A and D45N enzymes were inactive. The purified D45E enzyme exhibited approximately 5% of the wild type activity with about a 5-fold decrease in affinity for Mg2+. Intrinsic tryptophan fluorescence was used to probe Mg2+ binding. ArsA containing only Trp159 exhibited fluorescence enhancement upon the addition of MgATP, which was absent in D45N and D45A. As another measure of conformation, limited trypsin digestion was used to estimate the surface accessibility of residues in ArsA. ATP and Sb(III) synergistically protected wild type ArsA from trypsin digestion. Subsequent addition of Mg2+ increased trypsin sensitivity. D45N and D45A remained protected by ATP and Sb(III) but lost the Mg2+ effect. D45E exhibited an intermediate Mg2+ response. These results indicate that Asp45 is a Mg2+-responsive residue, consistent with its function as a Mg2+ ligand.  相似文献   

2.
The ArsA protein, the catalytic component of the plasmid-encoded resistance system for removal of the toxic oxyanions arsenite, antimonite, and arsenate from bacterial cells, catalyzes oxyanion-stimulated ATP hydrolysis. Three lines of evidence suggest that the ArsA protein functions as a homodimer. First, the ArsA protein was modified with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA). Antimonite potentiated FSBA inhibition, while ATP or ADP afforded partial protection. ATP and antimonite together provided complete protection, indicating interaction of the anion- and nucleotide-binding sites. The estimated Ki values for FSBA were 0.4 mM in the absence of antimonite and 0.1 mM in the presence of antimonite, suggesting that the binding of antimonite increased the affinity of ArsA protein for FSBA. Incorporation of [14C]FSBA was examined. Extrapolation of the amount of FSBA required to inactivate the protein indicated that 1 mol of FSBA was sufficient to inhibit the activity of 1 mol of ArsA protein in the absence of substrates, while only 0.5 mol was required in the presence of the anionic substrate antimonite. Second, chemical cross-linking of the 63-kDa ArsA protein with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline resulted in formation of a species approximately twice the size of the monomer in the presence of antimonite but not ATP. Third, determination of the average mass of the ArsA protein in solution by light scattering demonstrated that the average species was 66 kDa in the absence of substrates. In the presence of antimonite the weight average molecular mass increased to a mass in excess of 100 kDa. These results are consistent with the ArsA protein existing in an equilibrium between monomer and dimer, with the equilibrium favoring dimerization upon binding of the anionic substrate. Moreover, total loss of ATPase activity in the half-modified enzyme suggests that the catalytic sites on each monomer must interact.  相似文献   

3.
Molecular analysis of an ATP-dependent anion pump   总被引:3,自引:0,他引:3  
The plasmid-borne arsenical resistance operon encodes an ATP-driven oxyanion pump for the extrusion of the oxyanions arsenite, antimonite and arsenate from bacterial cells. The catalytic component of the pump, the 63 kDa ArsA protein, hydrolyses ATP in the presence of its anionic substrate antimonite (SbO2-). The ATP analogue 5'-p-fluorosulphonylbenzoyladenosine was used to modify the ATP binding site(s) of the ArsA protein. From sequence analysis there are two potential nucleotide binding sites. Mutations were introduced into the N-terminal site. Purified mutant proteins were catalytically inactive and incapable of binding nucleotides. Conformational changes produced upon binding of substrates to the ArsA protein were investigated by measuring the effects of substrates on trypsin inactivation. The hydrophobic 45.5 kDa ArsB protein forms the membrane anchor for the ArsA protein. The presence of the ArsA protein on purified inner membrane can be detected immunologically. In the absence of the arsB gene no ArsA is found on the membrane. Synthesis of the ArsB protein is limiting for formation of the pump. Analysis of mRNA structure suggests a potential translational block to synthesis of the ArsB protein. Northern analysis of the ars message demonstrates rapid degradation of the mRNA in the arsB region.  相似文献   

4.
ArsA, an anion-stimulated ATPase, consists of two nucleotide binding domains, A1 in the N terminus and A2 in the C terminus of the protein, connected by a linker. The A1 domain contains a high affinity ATP binding site, whereas the A2 domain has low affinity and it requires the allosteric ligand antimonite for binding ATP. ArsA is known to form a UV-activated adduct with [alpha-(32)P]ATP in the linker region. This study shows that on addition of antimonite, much more adduct is formed. Characterization of the nature of the adduct suggests that it is between ArsA and ADP, instead of ATP, indicating that the adduct formation reflects hydrolysis of ATP. The present study also demonstrates that the A1 domain is capable of carrying out unisite catalysis in the absence of antimonite. On addition of antimonite, multisite catalysis involving both A1 and A2 sites occurs, resulting in a 40-fold increase in ATPase activity. Studies with mutant proteins suggest that the A2 site may be second in the sequence of events, so that its role in catalysis is dependent on a functional A1 site. It is also proposed that ArsA goes through an ATP-bound and an ADP-bound conformation, and the linker region, where ADP binds under both unisite and multisite catalytic conditions, may play an important role in the energy transduction process.  相似文献   

5.
The ars operon of the conjugative R-factor R773 produces resistance to arsenicals in cells of Escherichia coli. The operon encodes an oxyanion pump which is composed of a membrane subunit, the 45.5-kDa ArsB protein, and a catalytic subunit, the 63-kDa ArsA protein. Purified ArsA protein is an arsenite(antimonite)-stimulated ATPase. From its amino acid sequence, as deduced from the nucleotide sequence, the ArsA protein has four tryptophanyl residues which could serve as intrinsic fluorescent probes for the study of substrate-induced conformational changes. Both static and dynamic measurements of tryptophan fluorescence were performed with the ArsA protein. Results from static anisotropy measurements indicated differences in molecular motion with addition of ATP, SbO2-, or Mg2+. These results were supported by time decay measurements of fluorescence anisotropy. The results of time decay measurements indicated a shorter correlation time, reflecting localized motion in the vicinity of the probe, and a longer correlation time, which could have arisen from rotation of the major portion of the molecule. The longer correlation time changed with addition of the various effectors, especially MgCl2, suggesting that binding of Mg2+ decreases probe mobility.  相似文献   

6.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The ArsAB ATPase is an efflux pump located in the inner membrane of Escherichia coli. This transport ATPase confers resistance to arsenite and antimonite by their extrusion from the cells. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB. The complex is similar in many ways to ATP-binding cassette ('ABC') transporters, which typically have two groups of six transmembrane-spanning helical segments and two nucleotide-binding domains (NBDs). The 45 kDa ArsB protein has 12 transmembrane-spanning segments. ArsB contains the substrate translocation pathway and is capable of functioning as an anion uniporter. The 63 kDa ArsA protein is a substrate-activated ATPase. It has two homologous halves, A1 and A2, which are clearly the result of an ancestral gene duplication and fusion. Each half has a consensus NBD. The mechanism of allosteric activation of the ArsA ATPase has been elucidated by a combination of molecular genetics and biochemical, structural and kinetic analyses. Conformational changes produced by binding of substrates, activator and/or products could be revealed by stopped-flow fluorescence measurements with single-tryptophan derivatives of ArsA. The results demonstrate that the rate-limiting step in the overall reaction is a slow isomerization between two conformations of the enzyme. Allosteric activation increases the rate of this isomerization such that product release becomes rate-limiting, thus accelerating catalysis. ABC transporters, which exhibit similar substrate activation of ATPase activity, can undergo similar conformational changes to overcome a rate-limiting step. Thus the ArsAB pump is a useful model for elucidating mechanistic aspects of the ABC superfamily of transport ATPases.  相似文献   

8.
ArsA, the peripheral membrane component of the anion-translocating ATPase ArsAB, consists of two nucleotide binding domains (A1 and A2), which are connected by a linker sequence. Previous studies on ArsA have focused on the function of each nucleotide binding domain and the role of the linker, whereas the present study looks at the interactions between the binding domains and their interactions with the linker. It has previously been shown that the A1 domain of ArsA carries out unisite catalysis in the absence of antimonite, while A2 is recruited in multisite catalysis by antimonite in the presence of a functional A1 domain. Multisite catalysis thus seems to result from an interaction between A1 and A2 brought about by antimonite. In the present study, we provide direct biochemical evidence for interaction between the two nucleotide binding domains and show that the linker region acts as a transducer of the conformational changes between them. We find that nucleotide binding to the A2 domain results in a significant, detectable change in the conformation of the A1 domain. Two ATP analogs, FSBA and ATP gamma S, used in this study, were both found to bind preferentially to the A2 domain, and their binding resulted in changing the otherwise compact A1 domain into an open conformation. Point mutations in the A2 domain and the linker region also produced a similar effect on the conformation of A1, thus suggesting that events at A2 are relayed to A1 via the linker. We propose that nucleotide binding to A2 produces a two-tiered conformational change. The significance of these changes in the mechanism of ArsA is discussed.  相似文献   

9.
The ArsA ATPase is the catalytic subunit of the ArsAB oxyanion pump in Escherichia coli that is responsible for extruding arsenite or antimonite from inside the cell, thereby conferring resistance. Either antimonite or arsenite stimulates ArsA ATPase activity. In this study, the role of histidine residues in ArsA activity was investigated. Treatment of ArsA with diethyl pyrocarbonate (DEPC) resulted in complete loss of catalytic activity. The inactivation could be reversed upon subsequent incubation with hydroxylamine, suggesting specific modification of histidine residues. ATP and oxyanions afforded significant protection against DEPC inactivation, indicating that the histidines are located at the active site. ArsA has 13 histidine residues located at position 138, 148, 219, 327, 359, 368, 388, 397, 453, 465, 477, 520, and 558. Each histidine was individually altered to alanine by site-directed mutagenesis. Cells expressing the altered ArsA proteins were resistant to both arsenite and antimonite. The results indicate that no single histidine residue plays a direct role in catalysis, and the inhibition by DEPC may be caused by steric hindrance from the carbethoxy group.  相似文献   

10.
Licht S  Lee I 《Biochemistry》2008,47(12):3595-3605
Clp, Lon, and FtsH proteases are proteolytic molecular machines that use the free energy of ATP hydrolysis to unfold protein substrates and processively present them to protease active sites. Here we review recent biochemical and structural studies relevant to the mechanism of ATP-dependent processive proteolysis. Despite the significant structural differences among the Clp, Lon, and FtsH proteases, these enzymes share important mechanistic features. In these systems, mechanistic studies have provided evidence for ATP binding and hydrolysis-driven conformational changes that drive translocation of substrates, which has significant implications for the processive mechanism of proteolysis. These studies indicate that the nucleotide (ATP, ADP, or nonhydrolyzable ATP analogues) occupancy of the ATPase binding sites can influence the binding mode and/or binding affinity for protein substrates. A general mechanism is proposed in which the communication between ATPase active sites and protein substrate binding regions coordinates a processive cycle of substrate binding, translocation, proteolysis, and product release.  相似文献   

11.
Zhou T  Radaev S  Rosen BP  Gatti DL 《The EMBO journal》2000,19(17):4838-4845
Active extrusion is a common mechanism underlying detoxification of heavy metals, drugs and antibiotics in bacteria, protozoa and mammals. In Escherichia coli, the ArsAB pump provides resistance to arsenite and antimonite. This pump consists of a soluble ATPase (ArsA) and a membrane channel (ArsB). ArsA contains two nucleotide-binding sites (NBSs) and a binding site for arsenic or antimony. Binding of metalloids stimulates ATPase activity. The crystal structure of ArsA reveals that both NBSs and the metal-binding site are located at the interface between two homologous domains. A short stretch of residues connecting the metal-binding site to the NBSs provides a signal transduction pathway that conveys information on metal occupancy to the ATP hydrolysis sites. Based on these structural features, we propose that the metal-binding site is involved directly in the process of vectorial translocation of arsenite or antimonite across the membrane. The relative positions of the NBS and the inferred mechanism of allosteric activation of ArsA provide a useful model for the interaction of the catalytic domains in other transport ATPases.  相似文献   

12.
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1 (ECF1) has been found to be ligand-dependent, as measured indirectly by the activation of the enzyme that occurs on protease digestion, or when followed directly by monitoring the cleavage of this subunit using monoclonal antibodies. The cleavage of the epsilon subunit was fast in the presence of ADP alone, ADP + MG2+, ATP + EDTA, or AMP-PNP, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site(s). The half-maximal concentration of Pi required in the presence of ADP + Mg2+ to protect the epsilon subunit from cleavage by trypsin was 50 microM, which is in the range measured for the high-affinity binding of Pi to F1. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Mg2+ + Pi, the epsilon subunit cross-linked to beta in high yield. With ATP + EDTA or ADP + Mg2+ (no Pi), the yield of the beta-epsilon cross-linked product was much reduced. We conclude that the epsilon subunit undergoes a conformational change dependent on the presence of Pi. It has been found previously that binding of the epsilon subunit to ECF1 inhibits ATPase activity by decreasing the off rate of Pi [Dunn, S. D., Zadorozny, V. D., Tozer, R. G., & Orr, L. E. (1987) Biochemistry 26, 4488-4493]. This reciprocal relationship between Pi binding and epsilon-subunit conformation has important implications for energy transduction by the E. coli ATP synthase.  相似文献   

13.
R-factor mediated bacterial resistance to arsenical salts occurs by active extrusion of the toxic oxyanions from cells of gram negative bacteria. The ars operon of the conjugative plasmid R773 encodes an anion pump. The pump has two polypeptide components. The catalytic subunit, the ArsA protein, is an oxyanion-stimulated ATPase. The membrane component, the ArsB protein, has been localized in the inner membrane of Escherichia coli. The ArsA and ArsB proteins have been postulated to form a membrane complex which functions as an anion-translocating ATPase. In this study evidence is presented showing that expression of the arsB gene is required to anchor the ArsA protein to the inner membrane. Binding studies with purified ArsA to membranes with and without the arsB gene product confirm this requirement. Membranes of uncA mutants containing both the ArsA and ArsB proteins exhibit arsenite(antimonite)-stimulated ATPase activity. These results support the model in which the ArsA protein is the catalytic energy transducing component of the anion pump, whereas the integral membrane ArsB protein serves as both the anion channel and membrane binding site for the ArsA protein.  相似文献   

14.
The products of the arsenical resistance operon of resistance plasmid R733 form an efflux system for arsenicals. Detoxification results from active efflux of the oxyanions, preventing their concentration from reaching toxic levels. The largest polypeptide encoded by the ars operon was purified. From N-terminal sequencing the purified protein, termed the ArsA protein, was shown to correspond to the product of the arsA gene. The purified protein was demonstrated to bind ATP by two methods. First, a photoadduct of the protein with [alpha-32P]ATP was formed by irradiation at 254 nm. Second, the purified protein bound a fluorescent ATP analogue, 2',3'-o-(2,4,6)trinitrophenyl ATP, with a half-maximal affinity of 2 microM. By both assays competition was observed with ATP or ADP, but not with AMP, GTP, CTP, or UTP. In both nucleotide binding assays, Mg2+ was required, but neither arsenite nor antimonate had any affect. In contrast, the ArsA protein exhibited an ATPase activity which was dependent on the presence of arsenite or antimonate. The results suggest that the ArsA protein is the catalytic subunit of an oxyanion-translocating ATPase.  相似文献   

15.
16.
Kinesin is a microtubule-activated, mechanochemical ATPase capable of moving particles along microtubules and making microtubules glide along a solid substrate. In this study we used limited proteolysis to study the structure of bovine brain kinesin, a heterotetramer composed of two heavy (120-kDa) and two light (62-kDa) chains. alpha-chymotrypsin, trypsin, and subtilisin all produced a protease-resistant 45-kDa fragment from the kinesin heavy chain. As isolated by gel-filtration chromatography, this fragment contains both the microtubule-binding site and the ATP catalytic site of the molecule. Proteolytic cleavage stimulated microtubule-dependent Mg2+-ATPase activity 4- to 5-fold up to 75-120 mumol ATP/min/mg. Cleavage also increased the affinity of the fragment for microtubules at least 10-fold. Since the purified fragment does not support the gliding of flagellar axonemes, we propose that cleavage of the heavy chain uncouples ATPase activity from its translocator activity, which may require other parts of the molecule.  相似文献   

17.
Elastase, V8 protease, subtilisin, trypsin, and chymotrypsin all cleaved the 1462-residue polypeptide of rat carbamyl phosphate synthetase I in segment C 160-180 residues from the COOH-end. Its activator N-acetylglutamate (AcGlu) increased the rate of cleavage approximately ninefold, presumably by binding preferentially to the conformation in which C is exposed. ATP/Mg2+ prevented proteolysis both +/- AcGlu. Kd,app for AcGlu (66 microM) and ATP (4.2 microM with AcGlu and 5 mM Mg2+) was estimated from the pseudo-first-order rate constants for inactivation caused by cleavage with elastase at C. Chymotrypsin and trypsin also hydrolyzed the enzyme, independent of AcGlu, at site D within less than 20 residues of the COOH-end. D was protected by ATP only in the presence of AcGlu and K+, and enzyme hydrolyzed exclusively at D had greater than 30-fold higher Km's for AcGlu and ATP. Digestion by trypsin at a third site (B) approximately 530 residues upstream from C appeared to occur subsequent to hydrolysis at C. Slow cleavage by elastase at an additional site (A) to give 360- and 1100-residue peptides was unaffected by AcGlu and ATP, and caused only modest loss of activity. These peptides were isolated by chromatography on DEAE-cellulose. Assignment of the smaller one to the NH2-end on the basis of its cysteine content places site A in the junction between the segments homologous to the small glutaminase and large synthetase subunits of Escherichia coli carbamyl phosphate synthetase II. Neither peptide alone was active; maximal regain of activity (approximately 25%) occurred on combining them in equimolar proportions. The sizes of the peptides produced by further digestion of the site A digest gave the approximate locations of the other sites. Sites A (Ala-417) and B (Arg-787) have recently been identified by NH2-terminal sequencing (S. G. Powers-Lee and K. Corina (1986) J. Biol. Chem. 261, 15349-15352). Reasons for the low value of KAcGlu,app are examined, and protection by ATP is discussed in relation to previous models for the conformational equilibria of the enzyme.  相似文献   

18.
Maize phosphoenolpyruvate carboxylase (PEPC) was rapidly and completely inactivated by very low concentrations of trypsin at 37 degrees C. PEP+Mg2+ and several other effectors of PEP carboxylase offered substantial protection against trypsin inactivation. Inactivation resulted from a fairly specific cleavage of 20 kDa peptide from the enzyme subunit. Limited proteolysis under catalytic condition (in presence of PEP, Mg2+ and HCO3) although yielded a truncated subunit of 90 kDa, did not affect the catalytic function appreciably but desensitized the enzyme to the effectors like glucose-6-phosphate glycine and malate. However, under non-catalytic condition, only malate sensitivity was appreciably affected. Significant protection of the enzyme activity against trypsin during catalytic phase could be either due to a conformational change induced on substrate binding. Several lines of evidence indicate that the inactivation caused by a cleavage at a highly conserved C-terminal end of the subunit.  相似文献   

19.
The ArsA ATPase is the catalytic subunit of a pump that is responsible for resistance to arsenicals and antimonials in Escherichia coli. Arsenite or antimonite allosterically activates the ArsA ATPase activity. ArsA homologues from eubacteria, archaea and eukarya have a signature sequence (DTAPTGHT) that includes a conserved histidine. The ArsA ATPase has two such conserved motifs, one in the NH2-terminal (A1) half and the other in the COOH-terminal (A2) half of the protein. These sequences have been proposed to be signal transduction domains that transmit the information of metal occupancy at the allosteric to the catalytic site to activate ATP hydrolysis. The role of the conserved residues His148 and His453, which reside in the A1 and A2 signal transduction domains respectively, was investigated by mutagenesis to create H148A, H453A or H148A/H453A ArsAs. Each altered protein exhibited a decrease in the V max of metalloid-activated ATP hydrolysis, in the order wild type ArsA>H148A>H453A>H148A/H453A. These results suggest that the histidine residues play a role in transmission of the signal between the catalytic and allosteric sites.  相似文献   

20.
The ArsA ATPase is the catalytic subunit of the arsenite-translocating ArsAB pump that is responsible for resistance to arsenicals and antimonials in Escherichia coli. ATPase activity is activated by either arsenite or antimonite. ArsA is composed of two homologous halves A1 and A2, each containing a nucleotide binding domain, and a single metalloid binding or activation domain is located at the interface of the two halves of the protein. The metalloid binding domain is connected to the two nucleotide binding domains through two DTAPTGH sequences, one in A1 and the other in A2. The DTAPTGH sequences are proposed to be involved in information communication between the metal and catalytic sites. The roles of Asp142 in A1 D 142TAPTGH sequence, and Asp447 in A2 D 447TAPTGH sequence was investigated after altering the aspartates individually to alanine, asparagine, and glutamate by site-directed mutagenesis. Asp142 mutants were sensitive to As(III) to varying degrees, whereas the Asp447 mutants showed the same resistance phenotype as the wild type. Each altered protein exhibited varying levels of both basal and metalloid-stimulated activity, indicating that neither Asp142 nor Asp447 is essential for catalysis. Biochemical characterization of the altered proteins imply that Asp142 is involved in Mg (2+) binding and also plays a role in signal transduction between the catalytic and activation domains. In contrast, Asp447 is not nearly as critical for Mg (2+) binding as Asp142 but appears to be in communication between the metal and catalytic sites. Taken together, the results indicate that Asp142 and Asp447, located on the A1 and A2 halves of the protein, have different roles in ArsA catalysis, consistent with our proposal that these two halves are functionally nonequivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号