首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The effects of nutrients on the survival of Escherichia coli in lake water   总被引:7,自引:5,他引:2  
Escherichia coli was shown to survive without decline in viable counts for at least 12 d in filtered-autoclaved lake water. In unfiltered lake water there was a rapid decline in the viable count of E. coli. The addition of synthetic sewage to filtered-autoclaved lake water led to an increase in the viable count of E. coli at 15°C and 37°C and to an increase in the survival time of the E. coli in unfiltered water. The addition of phosphate and carbon sources (glucose, glycerol, succinate, acetate and lactose) did not significantly increase the survival time of E. coli in unfiltered water over the controls. The addition of ammonium sulphate and some amino acids (as nitrogen sources) to the unfiltered lake water did lead to an increase in the survival times for E. coli and this increase was proportional to the concentration of the added nitrogen source.  相似文献   

2.
The effects of nutrients on the survival of Escherichia coli in lake water   总被引:3,自引:0,他引:3  
Escherichia coli was shown to survive without decline in viable counts for at least 12 d in filtered-autoclaved lake water. In unfiltered lake water there was a rapid decline in the viable count of E. coli. The addition of synthetic sewage to filtered-autoclaved lake water led to an increase in the viable count of E. coli at 15 degrees C and 37 degrees C and to an increase in the survival time of the E. coli in unfiltered water. The addition of phosphate and carbon sources (glucose, glycerol, succinate, acetate and lactose) did not significantly increase the survival time of E. coli in unfiltered water over the controls. The addition of ammonium sulphate and some amino acids (as nitrogen sources) to the unfiltered lake water did lead to an increase in the survival times for E. coli and this increase was proportional to the concentration of the added nitrogen source.  相似文献   

3.
A combination of direct viable count (DVC) and fluorescent in situ hybridization (FISH) procedures was used to enumerate viable Escherichia coli in river waters and wastewaters. A probe specific for the 16S rRNA of E. coli labeled with the CY3 dye was used; enumeration of hybridized cells was performed by epifluorescence microscopy. Data showed that the method was able to accurately enumerate a minimum of 3000 viable E. coli among a large number of non-fecal bacteria. When applied to river water and wastewater samples, the DVC-FISH method gave systematically higher E. coli counts than a reference culture-based method (miniaturized MPN method). The ratio between both counts (DVC-FISH/MPN) increased with decreasing abundance of culturable E. coli indicating that the proportion of viable but non-culturable (VBNC) E. coli (detectable by the DVC-FISH procedure and not by a culture-based method) was higher in low contaminated environments. We hypothesized that the more stressing conditions, i.e. nutritional stress and sunlight effect, met in low contaminated environments were responsible for the larger fraction of VBNC E. coli. A survival experiment, in which sterile mineral water was inoculated with a pure E. coli strain and incubated, confirmed that stressing conditions induced the apparition of non-culturable E. coli detectable by the DVC-FISH procedure. The analysis of the E. coli concentration along a Seine river longitudinal profile downstream a large input of fecal bacteria by a WWTP outfall showed an increasing fraction of VBNC E. coli with increasing residence time of the E. coli in the river after release. These data suggest that the DVC-FISH method is useful tool to analyze the dynamics of fecal bacteria in river water.  相似文献   

4.
This study was conducted to evaluate the performance of the MicroFoss system (Biosys, Ann Arbor, MI) for enumeration of total viable organisms, Escherichia coli and coliforms in ground beef. The system performance was compared to that of the USDA Bacteriological Analytical Method (BAM) reference culture methods. The correlation coefficients for the regression lines comparing the MicroFoss system detection times to the results of plate count methods for the total viable counts, coliform counts and the most probable number (MPN) method for E. coli were -0.95, -0.96 and -0.97, respectively. Tests comparing the reproducibility of data generated independently by two technicians on the same batch of samples showed no significant differences (P>0.05) in the MicroFoss detection times and culture results. The plate count methods for the total viable counts and coliform counts, and the MPN method for E. coli required 10, 11 and 22 times, respectively, the amount of time to complete tests compared to the length of time required to perform these tests using the MicroFoss system. The MicroFoss system produced reproducible data and provided a rapid and cost-efficient alternative method for enumeration of TVC, coliforms and E. coli in ground beef.  相似文献   

5.
A modified direct viable count method to detect living bacteria was used with image analysis for the rapid enumeration of chlorine-injured cells in an Escherichia coli culture. The method was also used for determining chlorine-induced injury in coliform isolates and enteric pathogenic bacteria. Cultures were incubated in phosphate-buffered saline, containing 0.3% Casamino Acids (Difco Laboratories, Detroit, Mich.), 0.03% yeast extract, and optimal concentrations of nalidixic acid. Samples were withdrawn before and after incubation and stained with acridine orange, and cell lengths and breadths were measured by computerized image analysis. After incubation, cells which exceeded the mean preincubation length (viable cells) were enumerated and the results were compared with those obtained by the plate count method. Injury in the chlorine-exposed cell population was determined from the difference in viable count obtained with a nonselective Casamino Acids-yeast extract-nalidixic acid medium and a selective Casamino Acids-yeast extract-nalidixic acid medium containing sodium deoxycholate or sodium lauryl sulfate. The levels of injury determined by the direct viable count technique by using image analysis were comparable to those determined by the plate count method. The results showed that image analysis, under optimal conditions, enumerated significantly higher numbers of stressed E. coli than the plate count method did and detected injury in various cultures in 4 to 6 h.  相似文献   

6.
A modified direct viable count method to detect living bacteria was used with image analysis for the rapid enumeration of chlorine-injured cells in an Escherichia coli culture. The method was also used for determining chlorine-induced injury in coliform isolates and enteric pathogenic bacteria. Cultures were incubated in phosphate-buffered saline, containing 0.3% Casamino Acids (Difco Laboratories, Detroit, Mich.), 0.03% yeast extract, and optimal concentrations of nalidixic acid. Samples were withdrawn before and after incubation and stained with acridine orange, and cell lengths and breadths were measured by computerized image analysis. After incubation, cells which exceeded the mean preincubation length (viable cells) were enumerated and the results were compared with those obtained by the plate count method. Injury in the chlorine-exposed cell population was determined from the difference in viable count obtained with a nonselective Casamino Acids-yeast extract-nalidixic acid medium and a selective Casamino Acids-yeast extract-nalidixic acid medium containing sodium deoxycholate or sodium lauryl sulfate. The levels of injury determined by the direct viable count technique by using image analysis were comparable to those determined by the plate count method. The results showed that image analysis, under optimal conditions, enumerated significantly higher numbers of stressed E. coli than the plate count method did and detected injury in various cultures in 4 to 6 h.  相似文献   

7.
The gfp-tagging method and lux-tagging method were compared to select a better method for verifying a viable but nonculturable (VBNC) state of bacteria in the environment. An environmental isolate of Salmonella typhi was chromosomally marked with a gfp gene encoding green fluorescent protein (GFP). The hybrid transposon mini-Tn5 gfp was transconjugated from E. coli to S. typhi. Using the same method, S. typhi was chromosomally marked with luxAB genes encoding luciferase. The survival of gfp-tagged S. typhi introduced into groundwater microcosms was examined by GFP-based plate count, total cell count, and a direct viable count method. In microcosms containing lux-tagged S. typhi, luminescence-based plate count and the measurement of bioluminescence of each microcosm sample were performed. In microcosms containing lux-tagged S. typhi, viable but nonculturable cells could not be detected by using luminometry. As no distinguishable luminescence signals from the background signals were found in samples containing no culturable cells, a VBNC state of S. typhi could not be verified in lux-based systems. However, comparison between GFP-based direct viable counts and plate counts was a good method for verifying the VBNC state of S. typhi. Because GFP-based direct viable count method provided a direct and precise estimation of viable cells of introduced bacteria into natural environments, it can be used for verifying the VBNC state of bacteria in environmental samples.  相似文献   

8.
C.-H. LIM AND K.P. FLINT. 1995. Escherichia coli was heat stressed at 55, 60 or 65°C in sterile flasks of lake water. After 6 h at these temperatures the viable count on nutrient agar had dropped below the limits of detection (1 colony in 100 ml). The flasks were transferred to a 15°C incubator and left for 7 d. Recovery of the stressed E. coli was shown to occur within 48 h at this temperature. Recovery also occurred in microcosms amended with 5o (v/v) synthetic sewage. The stressed E. coli multiplied in the amended but not in the unamended microcosms.  相似文献   

9.
AIMS: The relationships between the beta-D-glucuronidase (GLUase) activity, the abundance of culturable Escherichia coli and the number of viable E. coli were investigated in river and wastewater samples. METHODS AND RESULTS: GLUase activity was measured as the rate of hydrolysis of 4-methylumbelliferyl-beta-D-glucuronide. Culturable E. coli were enumerated by the most probale number (MPN) microplate method. Viable E. coli were estimated by fluorescent in situ hybridization (FISH) coupled with a procedure of viability testing (DVC-FISH procedure). Significant correlations were found between the log of GLUase activity and both, the log culturable E. coli and the log of viable E. coli. CONCLUSIONS: GLUase activity per viable E. coli gave a broadly constant value from low to highly contaminated waters while GLUase activity per culturable E. coli strongly increased at low contaminated waters because of an underestimation of the number of active E. coli by the culture-based method. SIGNIFICANCE AND IMPACT OF THE STUDY: GLUase activity is a reliable parameter for the rapid quantification of viable E. coli in waters.  相似文献   

10.
Some effects of visible light on the survival of Escherichia coli in waters of the Butrón river were studied by comparing illuminated and nonilluminated systems. The following count methods were used: CFU on a selective medium (eosin-methylene blue agar), CFU on a medium of recuperation (Trypticase soy agar with yeast extract and glucose), number of metabolically active cells by reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, and total number of E. coli cells as determined by the acridine orange direct-count method. In the illuminated systems, decreases in CFU of E. coli and in the number of metabolically active cells were observed. However, no decline of the total number of E. coli cells was observed. By count methods, different stages of progressive dormancy of E. coli cells were determined to exist in illuminated systems. Culturable and recoverable cells were defined as viable cells, and metabolically active cells and morphologically intact cells were defined as somnicells. Indirect activity measurements were also done by using [14C]glucose. In illuminated systems, a decrease of glucose uptake by E. coli cells was observed throughout the experiments. The assimilated fraction of [14C]glucose decreased faster than the respired fraction in illuminated systems. The percentage of respired [14C]glucose (14CO2 production) with respect to the total glucose uptake increased throughout the experiments, and the percentage of assimilated glucose decreased. Therefore, the visible light was also responsible for an additional inhibition of biosynthetic processes.  相似文献   

11.
Some effects of visible light on the survival of Escherichia coli in waters of the Butrón river were studied by comparing illuminated and nonilluminated systems. The following count methods were used: CFU on a selective medium (eosin-methylene blue agar), CFU on a medium of recuperation (Trypticase soy agar with yeast extract and glucose), number of metabolically active cells by reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, and total number of E. coli cells as determined by the acridine orange direct-count method. In the illuminated systems, decreases in CFU of E. coli and in the number of metabolically active cells were observed. However, no decline of the total number of E. coli cells was observed. By count methods, different stages of progressive dormancy of E. coli cells were determined to exist in illuminated systems. Culturable and recoverable cells were defined as viable cells, and metabolically active cells and morphologically intact cells were defined as somnicells. Indirect activity measurements were also done by using [14C]glucose. In illuminated systems, a decrease of glucose uptake by E. coli cells was observed throughout the experiments. The assimilated fraction of [14C]glucose decreased faster than the respired fraction in illuminated systems. The percentage of respired [14C]glucose (14CO2 production) with respect to the total glucose uptake increased throughout the experiments, and the percentage of assimilated glucose decreased. Therefore, the visible light was also responsible for an additional inhibition of biosynthetic processes.  相似文献   

12.
Aims:  Escherichia coli is the faecal indicator species recommended by the US Environmental Protection Agency (USEPA) for monitoring fresh recreational water. Viable but nonculturable (VBNC) E. coli are living cells that are dormant and not culturable using standard microbiological cultivation methods. This study reports a comparison between the mTEC culture method recommended by USEPA for E. coli enumeration and a fluorescent antibody-direct viable count (FA-DVC) method to visualize living E. coli cells with a microscope.
Methods and Results:  Escherichia coli , faecal coliforms and Enterococcus were detected using standard methods recommended by the USEPA. VBNC E. coli was visualized with FA-DVC. Results were analysed with standard statistical methods (Pearson correlation; paired-sample t -test). Significantly higher numbers of E. coli were detected using the FA-DVC method than using the mTEC method. Escherichia coli results were also compared with faecal coliform (mFC broth) and Enterococcus (mEI agar) counts in the same samples.
Conclusions:  The results of this comparative study demonstrate that E. coli can be present in higher numbers than what are detected with standard culture methods.
Significance and Impact of the Study:  This study re-emphasizes the need for a rapid, accurate and precise method for detecting health risks to humans who use recreational waters.  相似文献   

13.
Cells of Escherichia coli K-12 were stressed by heating at 48 degrees C or by acid treatment at pH 4.2 for periods up to 1h. The addition of catalase to the selective medium increased the count of heat-stressed cells by 2.3-fold and acid-stressed cells by 4.8-fold. However, these values represented only a small percentage (3% for heat-stressed and 6% for acid-stressed cells respectively) of the population of injured but still viable cells. The addition of mannitol to the selective medium used to count acid-stressed cells did not increase the count. Whilst the presence of H2O2 in media may cause significant errors in the estimation of E. coli in certain situations these errors are unlikely to be significant in physiological studies of populations of cells injured by stress.  相似文献   

14.
The goal of this study was to develop a sensitive, specific, and accurate method for the selective detection of viable Escherichia coli O157:H7 cells in foods. A unique open reading frame (ORF), Z3276, was identified as a specific genetic marker for the detection of E. coli O157:H7. We developed a real-time PCR assay with primers and probe targeting ORF Z3276 and confirmed that this assay was sensitive and specific for E. coli O157:H7 strains (n = 298). Using this assay, we can detect amounts of genomic DNA of E. coli O157:H7 as low as a few CFU equivalents. Moreover, we have developed a new propidium monoazide (PMA)-real-time PCR protocol that allows for the clear differentiation of viable from dead cells. In addition, the protocol was adapted to a 96-well plate format for easy and consistent handling of a large number of samples. Amplification of DNA from PMA-treated dead cells was almost completely inhibited, in contrast to the virtually unaffected amplification of DNA from PMA-treated viable cells. With beef spiked simultaneously with 8 × 10(7) dead cells/g and 80 CFU viable cells/g, we were able to selectively detect viable E. coli O157:H7 cells with an 8-h enrichment. In conclusion, this PMA-real-time PCR assay offers a sensitive and specific means to selectively detect viable E. coli O157:H7 cells in spiked beef. It also has the potential for high-throughput selective detection of viable E. coli O157:H7 cells in other food matrices and, thus, will have an impact on the accurate microbiological and epidemiological monitoring of food safety and environmental sources.  相似文献   

15.
龋齿DNA疫苗工程菌采用的大肠杆菌DH-5α在生产过程中极易污染大肠杆菌噬菌体,所以应对原始菌种、主菌种和工作菌种及大量生产时的发酵液作大肠杆菌噬菌体检测。用大肠杆菌噬菌体VCSM13为标准噬菌体株,对大肠杆菌C3000和DH-5α分别作噬菌斑检测和pfu值计算,验证并确定以VCSM13作为标准噬菌体株,C3000作为检测菌株,对龋齿DNA疫苗原始菌种、主菌种(第一代)、工作菌种(2007001)和其发酵液(200703)分别作噬菌体检测,并建立了检测大肠杆菌噬菌体的直接噬菌斑法。结果显示VCSM13在DH-5α的噬菌斑计数为76,pfu/ml为7.6×1013,C3000的噬菌斑计数为81,pfu/ml为8.1×1013,龋齿DNA疫苗的原始菌种、主菌种、工作菌种和发酵液,噬菌斑计数全部为0。Pfu也为0。阳性对照为74,pfu/ml是7.4×1013,阴性对照为0。通过对阳性对照样本作增殖法试验及挑斑接种验证后,证明此法操作简单,灵敏度高。  相似文献   

16.
We investigated the viability of Escherichia coli cells during long-term cultivation in Brain Heart Infusion (BHI) medium and observed that the number of viable cells increased, then decreased, and increased again, in this medium, and finally the cells died out within about 10 days. This cell death may result from an increase in the pH of the medium. After repeated cultivation in BHI, bacterial cells that did not die out even under conditions of further cultivation were obtainable from cultures showing a stabilized viable count. We propose that long-term cultivation in BHI medium is a good system for studying growth phase-specific events in E. coli cells, because the total life-cycle of a population of E. coli, including exponential growth, stationary phase, and extinction, can be seen during a period of only about 10 days. Also, this system clearly allows detection of a phenotype that may not be detectable in other commonly used media. Moreover, in this report, we show that mutants displaying the GASP (growth advantage in stationary phase) phenotype appear at high frequency under long-term cultivation conditions.  相似文献   

17.
The decline in viable numbers of Salmonella typhimurium, Yersinia enterocolitica and Listeria monocytogenes in beef cattle slurry is temperature-dependent; they decline more rapidly at 17°C than at 4°C. Mesophilic anaerobic digestion caused an initial rapid decline in the viable numbers of Escherichia coli, Salm. typhimurium, Y. enterocolitica and L. monocytogenes. This was followed by a period in which the viable numbers were not reduced by 90%. The T90 values of E. coli, Salm. typhimurium and Y. enterocolitica ranged from 0.7 to 0.9 d during batch digestion and 1.1 to 2.5 d during semi-continuous digestion. Listeria monocytogenes had a significantly higher mean T90 value during semi-continuous digestion (35.7 d) than batch digestion (12.3 d). Anaerobic digestion had little effect in reducing the viable numbers of Campylobacter jejuni.  相似文献   

18.
We have used an Escherichia coli strain DH5a containing pGreenTIR to study the survival of this bacterium in river water. As green fluorescence was maintained throughout survival both in dark and illuminated conditions, gfp-tagged E. coli cells were clearly distinguished from the microbial community of the river Butrón. gfp-tagged E. coli cells were monitored to estimate total density as well as the density of the culturable and viable (active electron transport system, CTC+) cells. Our results indicate that autochthonous bacteria and introduced E. coli are predated by flagellates. The autochthonous bacterial community behaves as predation-escaping prey, showing a tendency to cellular miniaturization and so maintaining the density of the population. In contrast, introduced E. coli behaves as predation-non-escaping prey, so E. coli was eliminated from the system. When comparing the elimination by predation of heat-treated and non-heated gfp-tagged E. coli cells we deduce that the flagellates do not discriminate between live and heat-treated cells. Finally, in the presence of the river microbial community, the E. coli cells appeared to be ingested before cellular deterioration could occur. Thus predation reduces the quantitative importance of the viable but nonculturable (VBNC) population of E. coli in the aquatic systems.  相似文献   

19.
The effect of chlorine on β- D- galactosidase activity of sewage bacteria and Escherichia coli was studied. β- D- galactosidase activity of sewage was more resistant to chlorine than faecal coliform cultivability. At low initial dosage (0·05 mg Cl2 l−1) neither cultivability (colony-forming units (cfu)), nor enzyme activity of E. coli suspensions were severely impaired. When initial chlorine concentration was increased to 0·1 mg Cl2 l−1, the cfu number decreased whereas enzyme activity remained high, i.e. the enzyme activity calculated cfu−1 increased. At higher chlorine doses both cfu and enzyme activity were reduced, but non-cultivable cells retained assayable activity after chlorination. Mean values of the enzyme activity calculated cfu−1 decreased when the chlorine dosage was increased from 0·1 to 0·5 mg Cl2 l−1, but were not significantly different ( P > 0·05) for dosages of 0·2–0·7 mg Cl2 l−1. After chlorination, β- D- galactosidase activity of E. coli was less reduced than cfu and direct viable count numbers, but more reduced than 5-cyano-2-3, ditolyl tetrazolium chloride and total cell counts, and the enzyme activity represented an alternative activity parameter of chlorinated samples.  相似文献   

20.
A previously green fluorescent protein (GFP)-labeled PP01 virulent bacteriophage, specific to Escherichia coli O157:H7, was used to construct lysozyme-inactivated GFP-labeled PP01 phage (PP01e-/GFP). The new recombinant phage lacked lytic activity because of the inactivation of gene e, which produces the lysozyme responsible for cell lysis. Gene e was inactivated by inserting an amber stop codon. Prolonged incubation of E. coli O157:H7 cells with PP01e-/GFP did not lead to cell lysis, while the propagation of PP01e-/GFP in host cells increased the intensity of green fluorescence. Retention of cell morphology and increase in fluorescence enabled the direct visualization and enumeration of E. coli O157:H7 cells within an hour. The PP01e-/GFP system, when combined with nutrient uptake analysis, further allowed the discriminative detection of culturable, viable but nonculturable (VBNC), and dead cells in the stress-induced aquatic environment. Stress-induced cells, which retained culturability, allowed phage propagation and produced bright green florescence. Nonculturable cells (VBNC and dead) allowed only phage adsorption but no proliferation and remained low fluorescent. The low-fluorescent nonculturable cells were further differentiated into VBNC and dead cells on the basis of nutrient uptake analysis. The low-fluorescent cells, which grew in size by nutrient incorporation during prolonged incubation in nutrient medium, were defined as metabolically active and in the VBNC state. The elongated VBNC cells were then easily recognizable from dead cells. The proposed assay enabled the detection and quantification of VBNC cells. Additionally, it revealed the proportion of culturable to VBNC cells within the population, as opposed to conventional techniques, which demonstrate VBNC cells as a differential value of the total viable count and the culturable cell count.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号