首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures are described for the selective removal of the beta 1 or the beta 2 subunits from the detergent-solubilized channel from rat brain, and the functional integrity of the resulting protein complex is examined. Treatment of the channel with 1.0 M MgCl2 followed by sedimentation through sucrose gradients results in complete separation of beta 1 from the alpha-beta 2 complex and complete loss of [3H]saxitoxin (STX) binding activity. At intermediate MgCl2 concentrations, the loss of beta 1 and the loss of [3H]STX binding activity are closely correlated. Tetrodotoxin (TTX) quantitatively stabilizes the solubilized complex against both the loss of beta 1 and the loss of [3H]STX binding activity. This indicates that association of the alpha and beta 1 subunits is required to maintain the STX/TTX binding site in a conformation with high affinity for STX and TTX in the detergent-solubilized state. Treatment of the solubilized sodium channel with dithiothreitol in the presence of TTX causes specific release of the beta 2 subunit, without significantly removing beta 1. There is little or no correlation between the amount of beta 2 in the sodium channel complex and the ability of the preparation to bind [3H]STX. We conclude from these studies that the presence of beta 1, but not beta 2, is required for the integrity of the STX/TTX binding site of the solubilized and purified rat brain sodium channel.  相似文献   

2.
The saxitoxin receptor of the sodium channel purified from rat bran contains three types of subunits: alpha with Mr approximately 270,000, beta 1 with Mr approximately 39,000, and beta 2 with Mr approximately 37,000. These are the only polypeptides which quantitatively co-migrate with the purified saxitoxin receptor during velocity sedimentation through sucrose gradients. beta 1 and beta 2 are often poorly resolved by gel electrophoresis in sodium dodecyl sulfate (SDS), but analysis of the effect of beta-mercaptoethanol on the migration is covalently attached to the alpha subunit by disulfide bonds while the beta 1 subunit is not. The alpha and beta subunits of the sodium channel were covalently labeled in situ in synaptosomes using a photoreactive derivative of scorpion toxin. Treatment of SDS-solubilized synaptosomes with beta-mercaptoethanol decreases the apparent molecular weight of the alpha subunit band without change in the amount of 125I-labeled scorpion toxin associated with either the alpha or beta subunit bands. These results indicate that the alpha and beta 1 subunits are labeled by scorpion toxin whereas beta 1 is not and that the beta 2 subunit is covalently attached to alpha by disulfide bonds in situ as well as in purified preparations.  相似文献   

3.
Antibodies to the alpha and beta 2 subunits and site-directed antibodies that distinguish alpha subunits of the RI and RII subtypes have been used to study the biosynthesis and assembly of sodium channels. The RII sodium channel subtype is preferentially expressed in rat brain neurons in primary cell culture. Post-translational processing of alpha subunits includes incorporation of palmityl residues in thioester linkage and sulfate residues attached to oligosaccharides. The incorporation of [3H] palmitate into alpha subunits is inhibited by tunicamycin, indicating that it occurs in the early stages of biosynthesis but after co-translational glycosylation. Mature alpha subunits are attached to beta 2 subunits through disulfide bonds within 1 h after synthesis and up to 30% can be specifically immunoprecipitated from the cell surface with antibodies against the beta 2 subunits by 4 h after synthesis. The remaining alpha subunits remain in an intracellular pool. The alpha subunits synthesized in the presence of castanospermine and swainsonine have reduced apparent size. Castanospermine prevents incorporation of approximately 81% of the sialic acid of the alpha subunit and inhibits sulfation but not palmitylation. Although inhibition of glycosylation with tunicamycin blocks assembly of functional sodium channels, castanospermine and swainsonine do not prevent the covalent assembly of alpha and beta 2 subunits or the transport of alpha beta 2 complexes to the cell surface, and sodium channels synthesized under these conditions have normal affinity for saxitoxin. Thus, the extensive processing and terminal sialylation of oligosaccharide chains during maturation of the alpha subunit is not essential. A kinetic model for biosynthesis, processing, and assembly of sodium channel subunits is presented.  相似文献   

4.
The sodium channel purified from rat brain is composed of three subunits: alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000). alpha and beta 2 subunits are linked through disulfide bonds. Procedures are described for preparative isolation of the beta 1 and beta 2 subunits under native conditions. Pure beta 2 subunits obtained by this procedure were used to prepare a specific anti-beta 2 subunit antiserum. Antibodies purified from this serum by antigen affinity chromatography recognize only disulfide-linked alpha beta 2 complexes and beta 2 subunits in immunoblots, and immunoprecipitate 32P-labeled alpha subunits of purified sodium channels having intact disulfide bonds, but not those of sodium channels from which beta 2 subunits have been detached by reduction of disulfide bonds. These antibodies also immunoprecipitate 89% of the high affinity saxitoxin-binding sites from rat brain membranes, indicating that nearly all sodium channels in rat brain have disulfide-linked alpha beta 2 subunits. Approximately 22% of beta 2 subunits in adult rat brain are not disulfide-linked to alpha subunits. Anti-beta 2 subunit antibodies are specific for sodium channels in the central nervous system and will not cross-react with sodium channels in skeletal muscle or sciatic nerve. The brains of a broad range of vertebrate species, including electric eel, are shown to express sodium channels with disulfide-linked alpha beta 2 subunits.  相似文献   

5.
6.
7.
The separation of two photoreactive derivatives of the alpha-scorpion toxin from Leiurus quinquestriatus is described. When the two photoreactive derivatives were photolyzed separately in the presence of brain membranes containing voltage-sensitive sodium channels, one labeled the alpha subunit preferentially while the other labeled beta 1 more intensely than alpha. Batrachotoxin enhanced the efficiency of covalent labeling by the photoreactive derivatives of scorpion toxin. In all the labeling experiments, the specific incorporation of radioactive scorpion toxin was eliminated by an excess of nonradioactive scorpion toxin. The alpha polypeptide labeled in synaptosomes by photoreactive scorpion toxin was demonstrated by immunological techniques to be the same large polypeptide identified in sodium channels purified by their saxitoxin binding activity. The alpha and beta 1 subunits were detected by rapid photoaffinity labeling of a freshly prepared brain homogenate in the presence of a mixture of nine protease inhibitors, indicating that they are components of the sodium channel in intact brain tissue. The association of the covalently labeled polypeptides with the membrane was investigated by treatment of labeled synaptosomes with various agents known to remove proteins only indirectly attached to the lipid bilayer via a membrane-bound protein. In all cases, both the alpha and the beta 1 polypeptides remained in the membrane fraction following extraction. This confirms earlier proposals that the alpha polypeptide has a portion of its mass embedded within the lipid bilayer and suggests that the beta 1 polypeptide does as well.  相似文献   

8.
The purified Na+ channel from rat brain consists of alpha (260 kDa), beta 1 (36 kDa), and beta 2 (33 kDa) subunits. Pure beta 1 subunits were prepared from purified rat brain Na+ channels which had been adsorbed to hydroxylapatite resin and used to prepare specific anti-beta 1 subunit antiserum. Antibodies purified from this antiserum by antigen affinity chromatography immunoprecipitate 125I-labeled, purified beta 1 subunits and purified Na+ channels (measured as high affinity [3H] saxitoxin binding sites) and recognize beta 1 subunits on immunoblots of solubilized rat brain membranes. The affinity-purified anti-beta 1 antibodies recognize beta 1 subunits in rat spinal cord, heart, skeletal muscle, and sciatic nerve, but do not detect immunoreactive beta 1 subunits in eel electroplax or eel brain. The developmental time course of expression of immunoreactive beta 1 subunits in rat forebrain was measured by immunoprecipitation followed by immunoblotting with affinity-purified anti-beta 1 antibodies. The amount of immunoreactive beta 1 subunits increased steadily to adult levels during the first 21 days of postnatal development.  相似文献   

9.
The maxi-K channel from bovine aortic smooth muscle consists of a pore-forming alpha subunit and a regulatory beta1 subunit that modifies the biophysical and pharmacological properties of the alpha subunit. In the present study, we examine ChTX-S10A blocking kinetics of single maxi-K channels in planar lipid bilayers from smooth muscle or from tsA-201 cells transiently transfected with either alpha or alpha+beta 1 subunits. Under low external ionic strength conditions, maxi-K channels from smooth muscle showed ChTX-S10A block times, 48 +/- 12 s, that were similar to those expressing alpha+beta 1 subunits, 51 +/- 16 s. In contrast, with the alpha subunit alone, ChTX-S10A block times were much shorter, 5 +/- 0.6 s, and were qualitatively similar to previously reported values for the skeletal muscle maxi-K channel. Increasing the external ionic strength caused a decrease in ChTX-S10A block times for maxi-K channel complexes of alpha+beta 1 subunits but not of alpha subunits alone. These findings indicate that it may be possible to predict the association of beta 1 subunits with native maxi-K channels by monitoring the kinetics of ChTX blockade of single channels, and they suggest that maxi-K channels in skeletal muscle do not contain a beta 1 subunit like the one present in smooth muscle. To further test this hypothesis, we examined the binding and cross-linking properties of [(125)I]-IbTX-D19Y/Y36F to both bovine smooth muscle and rabbit skeletal muscle membranes. [(125)I]-IbTX-D19Y/Y36F binds to rabbit skeletal muscle membranes with the same affinity as it does to smooth muscle membranes. However, specific cross-linking of [(125)I]-IbTX-D19Y/Y36F was observed into the beta 1 subunit of smooth muscle but not in skeletal muscle. Taken together, these data suggest that studies of ChTX block of single maxi-K channels provide an approach for characterizing structural and functional features of the alpha/beta 1 interaction.  相似文献   

10.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.  相似文献   

11.
Modulation of the Na,K-pump function by beta subunit isoforms   总被引:4,自引:0,他引:4       下载免费PDF全文
To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+.  相似文献   

12.
The dihydropyridine-binding subunit alpha 1 of the calcium channel complex from rabbit skeletal muscle can be partially depleted from the alpha 2 delta beta-complex using wheat germ agglutinin-affinity chromatography. This depletion of the alpha 1 from the other subunits leads to a loss of dihydropyridine-binding, which can be fully reconstituted by repletion of the alpha 1 with the other subunits. Reassembly of these subunits results in an increase in the Kd and Bmax of the dihydropyridine-binding indicating that the non-dihydropyridine-binding subunits influence dihydropyridine-binding. The affinity of the alpha 1 subunit for the other subunits was determined to be approximately 35 nM. Since the free alpha 1 subunit will not bind to the beta subunit alone, there is evidence, given the selective partitioning of the beta subunit to the lectin-bound subunit pool, that either beta binds with higher affinity to the alpha 2 delta-complex than to the free alpha 1 subunit or that the bound alpha 1 creates or modulates beta-binding. This indicates a functional high affinity interaction between the dihydropyridine-binding alpha 1 subunit and the alpha 2 delta beta-complex.  相似文献   

13.
Heterotetrameric (alphabetagammadelta) sarcosine oxidase from Corynebacterium sp. P-1 (cTSOX) contains noncovalently bound FAD and NAD(+) and covalently bound FMN, attached to beta(His173). The beta(His173Asn) mutant is expressed as a catalytically inactive, labile heterotetramer. The beta and delta subunits are lost during mutant enzyme purification, which yields a stable alphagamma complex. Addition of stabilizing agents prevents loss of the delta but not the beta subunit. The covalent flavin link is clearly a critical structural element and essential for TSOX activity or preventing FMN loss. The alpha subunit was expressed by itself and purified by affinity chromatography. The alpha and beta subunits each contain an NH(2)-terminal ADP-binding motif that could serve as part of the binding site for NAD(+) or FAD. The alpha subunit and the alphagamma complex were each found to contain 1 mol of NAD(+) but no FAD. Since NAD(+) binds to alpha, FAD probably binds to beta. The latter could not be directly demonstrated since it was not possible to express beta by itself. However, FAD in TSOX from Pseudomonas maltophilia (pTSOX) exhibits properties similar to those observed for the covalently bound FAD in monomeric sarcosine oxidase and N-methyltryptophan oxidase, enzymes that exhibit sequence homology with beta. A highly conserved glycine in the ADP-binding motif of the alpha(Gly139) or beta(Gly30) subunit was mutated in an attempt to generate NAD(+)- or FAD-free cTSOX, respectively. The alpha(Gly139Ala) mutant is expressed only at low temperature (t(optimum) = 15 degrees C), but the purified enzyme exhibited properties indistinguishable from the wild-type enzyme. The much larger barrier to NAD(+) binding in the case of the alpha(Gly139Val) mutant could not be overcome even by growth at 3 degrees C, suggesting that NAD(+) binding is required for TSOX expression. The beta(Gly30Ala) mutant exhibited subunit expression levels similar to those of the wild-type enzyme, but the mutation blocked subunit assembly and covalent attachment of FMN, suggesting that both processes require a conformational change in beta that is induced upon FAD binding. About half of the covalent FMN in recombinant preparations of cTSOX or pTSOX is present as a reversible covalent 4a-adduct with a cysteine residue. Adduct formation is not prevented by mutating any of the three cysteine residues in the beta subunit of cTSOX to Ser or Ala. Since FMN is attached via its 8-methyl group to the beta subunit, the FMN ring must be located at the interface between beta and another subunit that contains the reactive cysteine residue.  相似文献   

14.
The sodium channel purified from rat brain is a heterotrimeric complex of alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000) subunits. alpha and beta 2 are attached by disulfide bonds. Removal of beta 1 subunits by incubation in 1.0 M MgCl2 followed by reconstitution into phospholipid vesicles yielded a preparation of alpha beta 2 which did not bind [3H]saxitoxin, mediate veratridine-activated 22Na+ influx, or bind the 125I-labeled alpha-scorpion toxin from Leiurus quinquestriatus (LqTx). In contrast, removal of beta 2 subunits by reduction of disulfide bonds with 1.5 mM dithiothreitol followed by reconstitution into phospholipid vesicles yielded a preparation of alpha beta 1 that retained full sodium channel function. Alpha beta 1 bound [3H]saxitoxin with a KD of 4.1 nM at 36 degrees C. It mediated veratridine-activated 22Na+ influx at a comparable initial rate as intact sodium channels with a K0.5 for veratridine of 46 microM. Tetracaine and tetrodotoxin blocked 22Na+ influx. Like intact sodium channels, alpha beta 1 bound 125I-LqTx in a voltage-dependent manner with a KD of approximately 6 nM at a membrane potential of -60 mV and was specifically covalently labeled by azidonitrobenzoyl 125I-LqTx. When incorporated into planar phospholipid bilayers, alpha beta 1 formed batrachotoxin-activated sodium channels of 24 pS whose voltage-dependent activation was characterized by V50 = -110 mV and an apparent gating charge of 3.3 +/- 0.3. These results indicate that beta 2 subunits are not required for the function of purified and reconstituted sodium channels while a complex of alpha and beta 1 subunits is both necessary and sufficient for channel function in the purified state.  相似文献   

15.
Binding of the photoreactive ATP analog, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP), to the isolated alpha and beta subunits of TF1 and to the alpha 3 beta 3 "core" complex of the holoenzyme is described. About 1 mol of BzATP/mol of subunit was incorporated to isolated alpha and beta subunits. The incorporation of BzATP was prevented by ATP. Covalent binding of BzATP to the alpha subunit was in general somewhat lower than that observed with the beta subunit. No complex was formed upon mixing of either of the modified subunits with the complementary nontreated subunits. Covalent binding of 3 mol of BzATP/alpha 3 beta 3 complex completely inhibited ATPase activity and resulted in the dissociation of the complex. The labeled nucleotide analog was specifically incorporated into the beta subunit of the complex. The holoenzyme TF1, in contrast to the core complex, did not dissociate to the individual subunits upon covalent binding of BzATP. These results are discussed in relation to the location of the catalytic nucleotide binding site(s) and the conformation stability of the alpha 3 beta 3 core complex of TF1.  相似文献   

16.
Inhibitory glycine receptors (GlyRs) regulate motor coordination and sensory signal processing in spinal cord and other brain regions. GlyRs are pentameric proteins composed of membrane-spanning alpha and beta subunits. Here, site-directed mutagenesis combined with homology modeling based on the crystal structure of the acetylcholine binding protein identified key ligand binding residues of recombinant homooligomeric alpha1 and heterooligomeric alpha1beta GlyRs. This disclosed two highly conserved, oppositely charged residues located on adjacent subunit interfaces as being crucial for agonist binding. In addition, the beta subunit was found to determine the ligand binding properties of heterooligomeric GlyRs. Expression of an alpha1beta tandem construct and affinity purification of metabolically labeled GlyRs confirmed a subunit stoichiometry of 2alpha3beta. Because the beta subunit anchors GlyRs at synaptic sites, our results have important implications for the biosynthesis, clustering, and pharmacology of synaptic GlyRs.  相似文献   

17.
The alpha subunit of the FcERI binds IgE with high affinity. Previous studies have demonstrated that alpha subunit expression requires the presence of beta and/or gamma subunits, and it is not known how these two subunits contribute to the ability of the alpha subunit to bind IgE. In this report, we describe the expression and characterization of a human chimeric alpha subunit. The data demonstrate that high affinity IgE binding does not require the presence of the beta and/or gamma subunits and that this activity is localized to the extracellular domain (residues 26-201) of the human alpha subunit. Permanent cell lines expressing the chimeric receptor were used to characterize the binding parameters of the alpha subunit. These cell lines provide a means of identifying therapeutic agents which may be effective in the treatment/management of allergic diseases.  相似文献   

18.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

19.
Cysteine residues have been exchanged for serine residues at positions 10 and 108 in the epsilon subunit of the Escherichia coli F1 ATPase by site-directed mutagenesis to create two mutants, epsilon-S10C and epsilon-S108C. These two mutants and wild-type enzyme were reacted with [14C]N-ethylmaleimide (NEM) to examine the solvent accessibility of Cys residues and with novel photoactivated cross-linkers, tetrafluorophenyl azide-maleimides (TFPAM's), to examine near-neighbor relationships of subunits. In native wild-type F1 ATPase, NEM reacted with alpha subunits at a maximal level of 1 mol/mol of enzyme (1 mol/3 alpha subunits) and with the delta subunit at 1 mol/mol of enzyme; other subunits were not labeled by the reagent. In the mutants epsilon-S10C and epsilon-S108C, Cys10 and Cys108, respectively, were also labeled by NEM, indicating that these are surface residues. Reaction of wild-type enzyme with TFPAM's gave cross-linking of the delta subunit to both alpha and beta subunits. Reaction of the mutants with TFPAM's also cross-linked delta to alpha and beta and in addition formed covalent links between Cys10 of the epsilon subunit and the gamma subunit and between Cys108 of the epsilon subunit and the alpha subunit. The yield of cross-linking between sites on epsilon and other subunits depended on the nucleotide conditions used; this was not the case for delta-alpha or delta-beta cross-linked products. In the presence of ATP+EDTA the yield of cross-linking between epsilon-Cys10 and gamma was high (close to 50%) while the yield of epsilon-Cys108 and alpha was low (around 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In alpha1, beta2, and gamma2 subunits of the gamma-aminobutyric acid A (GABA(A)) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in alpha1 and beta2 subunits resulted each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the gamma subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the alpha1 subunit or the beta2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the alpha and beta subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the alpha subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the alpha1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the alpha1 and beta2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号