首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Severe left ventricular volume overloading causes myocardial and cellular contractile dysfunction. Whether this is also true for severe right ventricular volume overloading was unknown. We therefore created severe tricuspid regurgitation percutaneously in seven dogs and then observed them for 3.5-4.0 yr. All five surviving operated dogs had severe tricuspid regurgitation and right heart failure, including massive ascites, but they did not have left heart failure. Right ventricular cardiocytes were isolated from these and from normal dogs, and sarcomere mechanics were assessed via laser diffraction. Right ventricular cardiocytes from the tricuspid regurgitation dogs were 20% longer than control cells, but neither the extent (0.171 +/- 0.005 microm) nor the velocity (2.92 +/- 0.12 microm/s) of sarcomere shortening differed from controls (0.179 +/- 0.005 microm and 3.09 +/- 0.11 microm/s, respectively). Thus, despite massive tricuspid regurgitation causing overt right heart failure, intrinsic right ventricular contractile function was normal. This finding for the severely volume-overloaded right ventricle stands in distinct contrast to our finding for the left ventricle severely volume overloaded by mitral regurgitation, wherein intrinsic contractile function is depressed.  相似文献   

2.
3.
Objective: Previous studies evaluated the effect of obesity on left ventricular (LV) mass and systolic function in healthy subjects and in patients with coexistent chronic LV pressure overload due to hypertension, but no data exist regarding subjects with underlying volume overload. This study assessed the impact of overweight‐obesity on LV mass and systolic function in patients with coexistent chronic LV volume overload. Research Methods and Procedures: In 885 subjects with degenerative aortic regurgitation, a common cause of LV volume overload, LV mass, ejection fraction, and myocardial contractility were determined by echocardiography. Results: LV mass was greater in overweight (193.5 ± 54.2 g) and further increased in obese subjects (208.4 ± 63.6 g) in comparison with normal‐weight patients (177.7 ± 54.9 g) (p < 0.0001), and these differences were still evident after adjustment for LV workload, gender, and body size. Despite no differences in ejection fraction, LV myocardial contractility was lower in overweight (92.6 ± 14.8%) and obese subjects (91.7 ± 14.4%) than normal‐weight individuals (95.6 ± 16.0%) (p = 0.0058). The magnitudes of these effects were not different from those found in age‐, gender‐, and body size‐matched controls, suggesting additive interaction, rather than synergistic, between overweight‐obesity and the underlying condition of volume overload. Multivariate analysis showed that BMI independently predicted LV mass and that the negative effect on LV myocardial contractility was mediated by LV hypertrophy. Discussion: Overweight and obesity are associated with LV hypertrophy and contractile impairment in patients with underlying chronic LV volume overload.  相似文献   

4.
The constrictor response of the rabbit conduit coronary artery from hypertrophied heart (volume-overload stabilized hypertrophy) was studied to vasoactive substances. The heart/body weight ratio was 2.67 +/- 0.95 in the experimental group and 1.90 +/- 0.09 in the controls. The responses to acetylcholine, serotonin and potassium chloride was dose-dependent in the controls: the maximum amounted to 9.07 +/- 2.03 mN, 6.00 +/- 1.79 and 10.94 +/- 1.64 mN, respectively. Remarkably lower responses were detected in coronary arteries from hypertrophied hearts in the whole range of concentrations applied; the maximum was only 22.34 +/- 8.32% of the control response to acetylcholine, 17.83 +/- 11.37% to serotonin, and 21.74 +/- 5.50% to potassium chloride. A disbalance between stabilized cardiac hypertrophy and the remarkably low constrictor ability of the conduit coronary artery has been described.  相似文献   

5.
A myocyte system that senses and responds to mechanical inputs might be activated by any number of features of the time-varying length or force signals experienced by the myocytes. We therefore characterized left ventricular volume and wall stress signals during early volume overload with high spatial and temporal resolution. Left ventricular pressure and volume were measured in open-chest isoflurane-anesthetized male Sprague-Dawley rats 4 and 7 days after surgical creation of an infrarenal arteriovenous fistula or sham operation. Mean wall stresses were calculated by using a simple thick-walled ellipsoidal model. Consistent with previous reports, this surgical model produced a 66% increase in cardiac output and a 10% increase in left ventricular mass by day 7. A number of features of the time-varying volume signal (maximum, mean, amplitude, rates of rise and fall) were significantly altered during early volume overload, whereas many other proposed hypertrophic stimuli, including peak systolic wall stress and diastolic strain, were not. Treating hemodynamic variables more generally as time-varying signals allowed us to identify a wider range of candidate mechanical stimuli for hypertrophy (including some not previously proposed in the literature) than focusing on standard time points in the cardiac cycle. We conclude that features of the time-varying ventricular volume signal and related local deformations may drive hypertrophy during volume overload and propose that those features of the volume signal that also change during pressure overload might be the most interesting candidates for further exploration.  相似文献   

6.
实验性心肌厚大鼠左室c—fos表达及卡托普利的作用   总被引:2,自引:0,他引:2  
心肌肥厚时 ,心肌细胞作出适应性反应发生结构改建 ,这种重构与压力超负荷早期心肌细胞原癌基因表达过盛密切相关。本文应用大鼠腹主动脉缩窄模型结合血管紧张素转化酶抑制剂卡托普利 (Cap) ,研究心肌肥厚早期c fos表达及六周后血压、心功能及酶学指标的改变 ,以探讨Cap抑制心肌肥厚的可能机制。1 材料与方法(1)动物模型复制 采用体重 (2 5 0± 2 0 )g的健康、雄性SD大鼠 (由本校动物室提供 ) ,按腹主动脉缩窄法制备压力超负荷性心肌肥厚模型 ,使腹主动脉残留管腔直径为 0 7mm。(2 )动物分组 动物分成两部分 :第一部分 :…  相似文献   

7.
Insulin resistance is an increasingly prevalent condition in humans that frequently clusters with disorders characterized by left ventricular (LV) pressure overload, such as systemic hypertension. To investigate the impact of insulin resistance on LV remodeling and functional response to pressure overload, C57BL6 male mice were fed a high-fat (HFD) or a standard diet (SD) for 9 days and then underwent transverse aortic constriction (TAC). LV size and function were assessed in SD- and HFD-fed mice using serial echocardiography before and 7, 21, and 28 days after TAC. Serial echocardiography was also performed on nonoperated SD- and HFD-fed mice over a period of 6 wk. LV perfusion was assessed before and 7 and 28 days after TAC. Nine days of HFD induced systemic and myocardial insulin resistance (assessed by myocardial 18F-fluorodeoxyglucose uptake), and myocardial perfusion response to acetylcholine was impaired. High-fat feeding for 28 days did not change LV size and function in nonbanded mice; however, TAC induced greater hypertrophy, more marked LV systolic and diastolic dysfunction, and decreased survival in HFD-fed compared with SD-fed mice. Compared with SD-fed mice, myocardial perfusion reserve was decreased 7 days after TAC, and capillary density was decreased 28 days after TAC in HFD-fed mice. A short duration of HFD induces insulin resistance in mice. These metabolic changes are accompanied by increased LV remodeling and dysfunction after TAC, highlighting the impact of insulin resistance in the development of pressure-overload-induced heart failure.  相似文献   

8.
9.
Diabetes was reported to be associated with a mitochondrial (mt) DNA mutation at 3243 and variants at 1310, 1438, 3290, 3316, 3394, 12,026, 15,927, and 16,189. Among these mtDNA abnormalities, those at 3243, 3316, 15,927, and 16,189 were also suggested to cause cardiomyopathies. We investigated the prevalence of such mtDNA abnormalities in 68 diabetic patients with LV hypertrophy (LVH), 100 without LVH, and 100 controls. Among the 9 mtDNA abnormalities, those at 3243, 3316, and 15,927 tended to be more prevalent in diabetic patients with LVH than in those without LVH (1%, 1%, and 4% vs. 0%, 0%, and 0%). Notably, the variant at 16,189 was more prevalent in diabetic patients with LVH than without LVH (46% vs. 24%, [Formula: see text] ). The odds ratio for LVH was 3.0 (95% CI, 1.5-6.1) for the 16,189 variant. A common mtDNA variant at 16,189 was found to be associated with LVH in diabetic patients.  相似文献   

10.
The left ventricular dysfunction following acute pulmowary hypertension remains unexplained. We wondered if acute pulmonary hypertension could alter the transmural flow distribution within the left ventricular myocardium, independent of coronary flow and perfusion pressure. We used a canine preparation in which the left coronary system was perfused at constant flow and induced a two- to three-fold increase in pulmonary artery pressure by banding the pulmonary artery. Regional myocardial blood flow of the left coronary system was measured using radioactive microspheres, injected into the left coronary system before and after 10-30 min of banding of the pulmonary artery. The left ventricular subendocardial:epicardial ratio fell by 12 and 31% (p less than 0.05) of control value, 10 and 30 min, respectively, after banding of the pulmonary artery, the total flow to the left coronary system being kept constant. Left atrial mean pressure increased from 2.9 +/- 2.4 to 3.6 +/- 1.9 and 6.0 +/- 2.1 (p less than 0.05) following banding. The mechanism of the redistribution of coronary flow may relate to inappropriate vasodilation of the right septal myocardium with consequent relative left ventricular subendocardial hypoperfusion which might aggravate left ventricular ischemia in the presence of hypotension and hypoxia.  相似文献   

11.
Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload.  相似文献   

12.

Background

Most patients with growth hormone deficiency (GHD) show high body mass index. Overweight subjects, but GHD patients, were demonstrated to have high left ventricular mass index (LVMi) and abnormal LV geometric remodeling. We sought to study these characteristics in a group of GHD patients, in an attempt to establish the BMI-independent role of GHD.

Methods

Fifty-four patients, 28 F and 26 M, aged 45.9 ± 13.1, with adult-onset GHD (pituitary adenomas 48.2%, empty sella 27.8%, pituitary inflammation 5.5%, cranio-pharyngioma 3.7%, not identified pathogenesis 14.8%) were enrolled. To minimize any possible interferences of BMI on the aim of this study, the control group included 20 age- and weight-matched healthy subjects. The LV geometry was identified by the relationship between LVMi (cut-off 125 g/m2) and relative wall thickness (cut-off 0.45) at echocardiography.

Results

There was no significant between-group difference in resting cardiac morphology and function, nor when considering age-related discrepancy. The majority of patients had normal-low LVM/LVMi, but about one fourth of them showed higher values. These findings correlated to relatively high circulating IGF-1 and systolic blood pressure at rest. The main LV geometric pattern was eccentric hypertrophy in 22% of GHD population (26% of with severe GHD) and in 15% of controls (p = NS).

Conclusion

Though the lack of significant differences in resting LV morphology and function, about 25% of GHD patients showed high LVMi (consisting of eccentric hypertrophy), not dissimilarly to overweight controls. This finding, which prognostic role is well known in obese and hypertensive patients, is worthy to be investigated in GHD patients through wider controlled trials.  相似文献   

13.
The adaptation to chronic hypoxia confers long-lasting cardiac protection against acute ischemia–reperfusion injury. Protein kinase C (PKC) appears to play a role in the cardioprotective mechanism but the involvement of individual PKC isoforms remains unclear. The aim of this study was to examine the effects of chronic intermittent hypoxia (CIH; 7,000 m, 8 h/day) and acute administration of PKC-δ inhibitor (rottlerin, 0.3 mg/kg) on the expression and subcellular distribution of PKC-δ and PKC-ε in the left ventricular myocardium of adult male Wistar rats by Western blot and quantitative immunofluorescence microscopy. CIH decreased the total level of PKC-ε in homogenate without affecting the level of phosphorylated PKC-ε (Ser729). In contrast, CIH up-regulated the total level of PKC-δ as well as the level of phosphorylated PKC-δ (Ser643) in homogenate. Rottlerin partially reversed the hypoxia-induced increase in PKC-δ in the mitochondrial fraction. Immunofluorescent staining of ventricular cryo-sections revealed increased co-localization of PKC-δ with mitochondrial and sarcolemmal membranes in CIH hearts that was suppressed by rottlerin. The formation of nitrotyrosine as a marker of oxidative stress was enhanced in CIH myocardium, particularly in mitochondria. The expression of total oxidative phosphorylation complexes was slightly decreased by CIH mainly due to complex II decline. In conclusion, up-regulated PKC-δ in CIH hearts is mainly localized to mitochondrial and sarcolemmal membranes. The inhibitory effects of rottlerin on PKC-δ subcellular redistribution and cardioprotection (as shown previously) support the view that this isoform plays a role in the mechanism of CIH-induced ischemic tolerance.  相似文献   

14.
We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and exacerbated systolic dysfunction after transverse aortic constriction (TAC) and if this effect could be attenuated by treatment with the antioxidant tempol. Immediately after surgery, TAC and sham mice were assigned to a high-starch diet (58% of total energy intake as cornstarch and 10% fat) or high-fructose diet (61% fructose and 10% fat) with or without the addition of tempol [0.1% (wt/wt) in the chow] and maintained on the treatment for 8 wk. In response to TAC, fructose-fed mice had greater cardiac hypertrophy (55.1% increase in the heart weight-to-tibia length ratio) than starch-fed mice (22.3% increase in the heart weight-to-tibia length ratio). Treatment with tempol significantly attenuated cardiac hypertrophy in fructose-fed TAC mice (18.3% increase in the heart weight-to-tibia ratio). Similarly, fructose-fed TAC mice had a decreased LV area of fractional shortening (from 38+/-2% in sham to 22+/-4% in TAC), which was prevented by tempol treatment (33+/-3%). Markers of lipid peroxidation in fructose-fed TAC hearts were also blunted by tempol. In conclusion, tempol significantly blunted markers of cardiac hypertrophy, LV remodeling, contractile dysfunction, and oxidative stress in fructose-fed TAC mice.  相似文献   

15.
The dynamics of potential distribution of cardiac electric field on the body surface was studied in renovascular hypertensive rats (Goldblatt type) during the ventricular activity. Three inversions of the mutual location of positive and negative areas of the cardiac electric field on the body surface were found in normotensive and hypertensive rats during the QRS-T period. Left ventricular hypertrophy of the heart in rats caused by renovascular hypertension results in changes of temporal and amplitude characteristics of the body surface potential distribution during the initial and terminal ventricular activity. The shifting trajectory of the positive and negative areas and their extremal ranges on the body surface does not change during the ventricular activity in rats with left ventricular hypertrophy of the heart as compared to the initial normotensive state.  相似文献   

16.
17.
18.
Kim SJ  Oh HJ  Yoo DE  Shin DH  Lee MJ  Kim HR  Park JT  Han SH  Yoo TH  Choi KH  Kang SW 《PloS one》2012,7(4):e35534

Background and Aims

Electrocardiography (ECG) is the most widely used initial screening test for the assessment of left ventricular hypertrophy (LVH), an independent predictor of cardiovascular mortality in patients with end-stage renal disease (ESRD). However, traditional ECG criteria based only on voltage to detect LVH have limited clinical utility for the detection of LVH because of their poor sensitivity.

Methods

This prospective observational study was undertaken to compare the prognostic significance of commonly used ECG criteria for LVH, namely Sokolow-Lyon voltage (SV) or voltage-duration product (SP) and Cornell voltage (CV) or voltage-duration product (CP) criteria, and to investigate the association between echocardiographic LV mass index (LVMI) and ECG-LVH criteria in ESRD patients, who consecutively started maintenance hemodialysis (HD) between January 2006 and December 2008.

Results

A total of 317 patients, who underwent both ECG and echocardiography, were included. Compared to SV and CV criteria, SP and CP criteria, respectively, correlated more closely with LVMI. In addition, CP criteria provided the highest positive predictive value for echocardiographic LVH. The 5-year cardiovascular survival rates were significantly lower in patients with ECG-LVH by each criterion. In multivariate analyses, echocardiographic LVH [adjusted hazard ratio (HR): 11.71; 95% confidence interval (CI): 1.57–87.18; P = 0.016] and ECG-LVH by SP (HR: 3.43; 95% CI: 1.32–8.92; P = 0.011) and CP (HR: 3.07; 95% CI: 1.16–8.11; P = 0.024) criteria, but not SV and CV criteria, were significantly associated with cardiovascular mortality.

Conclusions

The product of QRS voltage and duration is helpful in identifying the presence of LVH and predicting cardiovascular mortality in incident HD patients.  相似文献   

19.
As a prelude to investigating the mechanism of regression of pressure overload-induced left ventricular (LV) hypertrophy (LVH), we studied the time course for the development and subsequent regression of LVH as well as accompanying alterations in cardiac function, histology, and gene expression. Mice were subjected to aortic banding for 4 or 8 wk to establish LVH, and regression was initiated by release of aortic banding for 6 wk. Progressive increase in LV mass and gradual chamber dilatation and dysfunction occurred after aortic banding. LVH was also associated with myocyte enlargement, interstitial fibrosis, and enhanced expression of atrial natriuretic peptide, collagen I, collagen III, and matrix metalloproteinase-2 but suppressed expression of alpha-myosin heavy chain and sarcoplasmic reticulum Ca(2+)-ATPase. Aortic debanding completely or partially reversed LVH, chamber dilatation and dysfunction, myocyte size, interstitial fibrosis, and gene expression pattern, each with a distinct time course. The extent of LVH regression was dependent on the duration of pressure overload, evidenced by the fact that restoration of LV structure and function was complete in animals subjected to 4 wk of aortic banding but incomplete in animals subjected to 8 wk of aortic banding. In conclusion, LVH regression comprises a variety of morphological, functional, and genetic components that show distinct time courses. A longer period of pressure overload is associated with a slower rate of LVH regression.  相似文献   

20.
Oxidative stress stimulates both growth and apoptosis in cardiac myocytes in vitro. We investigated the role of oxidative stress in the initial phases of cardiac remodeling induced in an animal model by volume overload. As plausible candidates for a connection between oxidative stress and cardiomyocyte apoptosis or hypertrophy, we explored the behaviour of two MAPKs, specifically JNK and ERK. At 48 h of overload, the greatest increase in oxidative stress coincided with a peak of cardiomyocyte apoptosis. This was possibly induced through the mitochondrial metabolism, as evidenced by the release of cytochrome c and a significant increase in the active forms of caspase-9 and -3, but not caspase-8. Oxidative stress markers significantly decreased at 96 h of overload, combined with a marked attenuation of apoptosis and the appearance of hypertrophy. The highest levels of JNK and the lowest levels of ERK phosphorylation were observed at 48 h of overload. Conversely, a sharp increase in ERK phosphorylation was detected at 96 h of overload coinciding with the hypertrophic response. Together these results show that oxidative stress is an early and transient event in myocardial volume overload. They suggest that oxidative stress mediates amplitude dependent apoptotic and hypertrophic responses in cardiomyocytes through the selective activation of, respectively, JNK and ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号