首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont "Candidatus Endobugula sertula." In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-"E. sertula" association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

2.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont “Candidatus Endobugula sertula.” In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-“E. sertula” association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

3.
Lopanik N  Lindquist N  Targett N 《Oecologia》2004,139(1):131-139
Larvae of the sessile marine invertebrate Bugula neritina (Bryozoa) are protected by an effective chemical defense. From the larvae, we isolated three bryostatin-class macrocyclic polyketides, including the novel bryostatin 20, that deterred feeding by a common planktivorous fish that co-occurs with B. neritina. A unique bacterial symbiont of B. neritina, Endobugula sertula, was hypothesized as the putative source of the bryostatins. We show that: (1) bryostatins are concentrated in B. neritina larvae and protect them against predation by fish; (2) the adults are not defended by bryostatins; and (3) E. sertula produces bryostatins. This study represents the first example from the marine environment of a microbial symbiont producing an anti-predator defense for its host and, in this case, specifically for the hosts larval stage, which is exceptionally vulnerable to predators.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

4.
Although the cosmopolitan marine bryozoan Bugula neritina is recognized as a single species, natural products from this bryozoan vary among populations. B. neritina is the source of the anticancer drug candidate bryostatin 1, but it also produces other bryostatins, and different populations contain different bryostatins. We defined two chemotypes on the basis of previous studies: chemotype O contains bryostatins with an octa-2,4-dienoate substituent (including bryostatin 1), as well as other bryostatins; chemotype M lacks bryostatins with the octa-2,4-dienoate substituent. B. neritina contains a symbiotic gamma-proteobacterium "Candidatus Endobugula sertula," and it has been proposed that bryostatins may be synthesized by bacterial symbionts. In this study, B. neritina populations along the California coast were sampled for genetic variation and bryostatin content. Colonies that differ in chemotype also differ genetically by 8% in the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene; this difference is sufficient to suggest that the chemotypes represent different species. Each species contains a distinct strain of "E. sertula" that differs at four nucleotide sites in the small subunit ribosomal RNA (SSU rRNA) gene. These results indicate that the chemotypes have a genetic basis rather than an environmental cause. Gene sequences from an Atlantic sample matched sequences from the California chemotype M colonies, suggesting that this type may be cosmopolitan due to transport on boat hulls.  相似文献   

5.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, "Candidatus Endobugula sertula." "Candidatus E. sertula" has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with "Candidatus E. sertula." In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status "Candidatus Endobugula glebosa" is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

6.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, “Candidatus Endobugula sertula.” “Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with “Candidatus E. sertula.” In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status “Candidatus Endobugula glebosa” is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

7.
Sessile marine animals like sponges, tunicates, and bryozoans are a rich source of bioactive natural products, many of which exhibit potent anticancer activities. However, most of these substances are available in very limited amounts only, which has prohibited further drug development. Recent evidence suggests that symbiotic bacteria might be the true producers of many animal-derived metabolites. In addition to revealing fascinating perspectives for research in marine chemical ecology, these findings suggest new solutions to the supply problem. Although most symbionts remain uncultivated, bacterial production systems might be created by isolating biosynthetic genes from marine metagenomes, and expressing them in culturable bacterial hosts. This review discusses cell-sorting, natural product visualization, and phylogenetic approaches to identify symbiotic producers. In addition, strategies to isolate genes and gene clusters from marine species consortia are described. These techniques have provided insights into the bacterial origin and biosynthesis of polyketides like the onnamides, swinholides, and bryostatins, of peptides including the patellamides, chlorinated dipeptides, and theopalauamide as well as of brominated biphenylethers.  相似文献   

8.
Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters   总被引:6,自引:0,他引:6  
Bryostatins (2 ng/ml), when combined with insulin in serum-free culture medium, are strongly mitogenic for Swiss 3T3 cells that have been arrested in the G1/G0 phase of the cell cycle. The mitogenic effect of the bryostatins is similar to that of 12-O-decanoylphorbol-13-acetate (TPA). A prior treatment of the cultures with TPA eliminated the mitogenic response to bryostatin and to a second addition of TPA. Conversely, a prior treatment of the cultures with bryostatin eliminated the mitogenic response to TPA. Bryostatin potently inhibited the binding of [3H]phorbol dibutyrate to a high affinity receptor in the cells. The findings suggest that the bryostatins and TPA act via the same receptor, possibly protein kinase C.  相似文献   

9.
The phorbol ester tumor promoter, 12-O-tetradecanoylphorbol-13-acetate [TPA) or phorbol 12-myristate 13-acetate), directly activates the calcium- and phospholipid-dependent protein kinase C (protein kinase C), which, in turn, generates a number of cellular responses. The bryostatins, a family of macrocyclic lactones isolated from marine bryozoans, also bind to and active protein kinase C. However, they differ from TPA in the selectivity of their responses in that they behave either as agonists or antagonists of protein kinase C actions. We used several bryostatins and TPA to examine the role of protein kinase C in the regulation of GH4C1 rat pituitary tumor cell proliferation. TPA inhibited [3H]thymidine incorporation in GH4 cells in a stereoselective and concentration-dependent manner. Examination of cell cycle distribution by flow cytometry revealed that TPA decreased the percentage of cells in S-phase and proportionally increased the percentage of G1-phase cells. Bryostatin 1 alone did not affect cell proliferation, but prevented the TPA inhibition of cell proliferation. Bryostatin 1 treatment from 30 min to 6 h after TPA treatment also prevented the growth-inhibitory action of TPA, suggesting that prolonged stimulation of protein kinase C is necessary for growth inhibition. Both bryostatin 1 and TPA down-regulated protein kinase C, indicating that down regulation of the enzyme cannot account for the growth inhibitory action of TPA. Bryostatin 2, which differs from bryostatin 1 by a hydroxyl substitution for the acetyl group at the C-7 carbon of the macrocyclic lactone ring (R1), inhibited cell proliferation and did not reduce the growth-inhibitory action of TPA. Bryostatins 3 and 8 (each of which has an ester group in the R1 position, yet contains other structural modifications) are antagonists for TPA inhibition of GH4 cell proliferation like bryostatin 1. We next examined the effect of bryostatins 3 and 8 on cell-substratum adhesion, a cellular response observed after GH4 cells are treated with growth-inhibitory agents. Bryostatin 8 (like bryostatin 1) did not enhance cell-substratum adhesion and blocked the action of TPA. In contrast, bryostatin 3 enhanced cell-substratum adhesion. Because bryostatin 3 blocked TPA inhibition of cell proliferation, yet did not block TPA-enhanced cell-substratum adhesion, these responses are not interdependent. We next examined the effect of bryostatin on other growth-inhibitory agents for GH4 cells. Bryostatin 8 blocks the effect of TPA on [3H]thymidine incorporation and the entry of G1 cells into S-phase, but does not block the growth-inhibitory action of thyrotropin-releasing hormone or epidermal growth factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
"Candidatus Endobugula sertula," the uncultured microbial symbiont of the bryozoan Bugula neritina, produces ecologically and biomedically important polyketide metabolites called bryostatins. We isolated two gene fragments from B. neritina larvae that have high levels of similarity to polyketide synthase genes. These gene fragments are clearly associated with the symbiont and not with the host.  相似文献   

11.
Mutualistic relationships are beneficial for both partners and are often studied within a single environment. However, when the range of the partners is large, geographical differences in selective pressure may shift the relationship outcome from positive to negative. The marine bryozoan Bugula neritina is a colonial invertebrate common in temperate waters worldwide. It is the source of bioactive polyketide metabolites, the bryostatins. Evidence suggests that an uncultured vertically transmitted symbiont, “Candidatus Endobugula sertula”, hosted by B. neritina produces the bryostatins, which protect the vulnerable larvae from predation. Studies of B. neritina along the North American Atlantic coast revealed a complex of two morphologically similar sibling species separated by an apparent biogeographic barrier: the Type S sibling species was found below Cape Hatteras, North Carolina, while Type N was found above. Interestingly, the Type N colonies lack “Ca. Endobugula sertula” and, subsequently, defensive bryostatins; their documented northern distribution was consistent with traditional biogeographical paradigms of latitudinal variation in predation pressure. Upon further sampling of B. neritina populations, we found that both host types occur in wider distribution, with Type N colonies living south of Cape Hatteras, and Type S to the north. Distribution of the symbiont, however, was not restricted to Type S hosts. Genetic and microscopic evidence demonstrates the presence of the symbiont in some Type N colonies, and larvae from these colonies are endowed with defensive bryostatins and contain “Ca. Endobugula sertula”. Molecular analysis of the symbiont from Type N colonies suggests an evolutionarily recent acquisition, which is remarkable for a symbiont thought to be transmitted only vertically. Furthermore, most Type S colonies found at higher latitudes lack the symbiont, suggesting that this host-symbiont relationship is more flexible than previously thought. Our data suggest that the symbiont, but not the host, is restricted by biogeographical boundaries.  相似文献   

12.
Candidatus Endobugula sertula,” the uncultured microbial symbiont of the bryozoan Bugula neritina, produces ecologically and biomedically important polyketide metabolites called bryostatins. We isolated two gene fragments from B. neritina larvae that have high levels of similarity to polyketide synthase genes. These gene fragments are clearly associated with the symbiont and not with the host.  相似文献   

13.
Frenulates are a group of gutless marine annelids belonging to the Siboglinidae that are nutritionally dependent upon endosymbiotic bacteria. We have characterized the bacteria associated with several frenulate species from mud volcanoes in the Gulf of Cadiz by PCR-DGGE of bacterial 16S rRNA genes, coupled with analysis of 16S rRNA gene libraries. In addition to the primary symbiont, bacterial consortia (microflora) were found in all species analysed. Phylogenetic analyses indicate that the primary symbiont in most cases belongs to the Gammaproteobacteria and were related to thiotrophic and methanotrophic symbionts from other marine invertebrates, whereas members of the microflora were related to multiple bacterial phyla. This is the first molecular evidence of methanotrophic bacteria in at least one frenulate species. In addition, the occurrence of the same bacterial phylotype in different Frenulata species, from different depths and mud volcanoes suggests that there is no selection for specific symbionts and corroborates environmental acquisition as previously proposed for this group of siboglinids.  相似文献   

14.
A family of structurally related macrocyclic lactones, bryostatins, have recently been shown to display several intriguing pharmacologic properties. Bryostatins are biosynthetic products of bryozoa phyllum of marine animals. To extend the analyses of the biological activities of these highly unusual biosynthetic animal products, we have examined the effect of bryostatin 1 (bryo-1) on the steady-state expression of the human immunodeficiency virus receptor, CD4, by normal peripheral blood T lymphocytes. Incubation of the cells with 5 nM bryo-1 caused a substantial loss of CD4 from the cell surface, as analyzed by flow cytometry using anti-CD4 monoclonal antibody. The modulation of CD4 expression by bryo-1 was not due to a cytotoxicity effect: in the culture conditions where it modulated CD4, bryo-1 also stimulated the expression of the interleukin 2 gene, as indicated by northern blot hybridization. In addition, incubation of the lymphocytes with nanomolar amounts of protein kinase C antagonist, staurosporine, resulted in the inhibition of the bryo-1-induced modulation of CD4 expression. The results of radioimmunoprecipitation analysis of detergent lysates of [35S] methionine-labeled lymphocytes strongly suggest that bryo-1 inhibits the glycosylation and expression of CD4 in a manner similar to that of tunicamycin.  相似文献   

15.
"Photobacterium mandapamensis" (proposed name) and Photobacterium leiognathi are closely related, phenotypically similar marine bacteria that form bioluminescent symbioses with marine animals. Despite their similarity, however, these bacteria can be distinguished phylogenetically by sequence divergence of their luminescence genes, luxCDAB(F)E, by the presence (P. mandapamensis) or the absence (P. leiognathi) of luxF and, as shown here, by the sequence divergence of genes involved in the synthesis of riboflavin, ribBHA. To gain insight into the possibility that P. mandapamensis and P. leiognathi are ecologically distinct, we used these phylogenetic criteria to determine the incidence of P. mandapamensis as a bioluminescent symbiont of marine animals. Five fish species, Acropoma japonicum (Perciformes, Acropomatidae), Photopectoralis panayensis and Photopectoralis bindus (Perciformes, Leiognathidae), Siphamia versicolor (Perciformes, Apogonidae), and Gadella jordani (Gadiformes, Moridae), were found to harbor P. mandapamensis in their light organs. Specimens of A. japonicus, P. panayensis, and P. bindus harbored P. mandapamensis and P. leiognathi together as cosymbionts of the same light organ. Regardless of cosymbiosis, P. mandapamensis was the predominant symbiont of A. japonicum, and it was the apparently exclusive symbiont of S. versicolor and G. jordani. In contrast, P. leiognathi was found to be the predominant symbiont of P. panayensis and P. bindus, and it appears to be the exclusive symbiont of other leiognathid fishes and a loliginid squid. A phylogenetic test for cospeciation revealed no evidence of codivergence between P. mandapamensis and its host fishes, indicating that coevolution apparently is not the basis for this bacterium's host preferences. These results, which are the first report of bacterial cosymbiosis in fish light organs and the first demonstration that P. leiognathi is not the exclusive light organ symbiont of leiognathid fishes, demonstrate that the host species ranges of P. mandapamensis and P. leiognathi are substantially distinct. The host range difference underscores possible differences in the environmental distributions and physiologies of these two bacterial species.  相似文献   

16.
Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 mum in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. "Candidatus Sulcia muelleri" is proposed as the name of the new symbiont.  相似文献   

17.
Bacteria were isolated from marine sponges from the Mediterranean and the Great Barrier Reef and characterized using numerical taxonomy techniques. A similar sponge-specific bacterial symbiont was found in 9 of 10 sponges examined from both geographic regions. This symbiont occurred in sponges of two classes and seven orders, and it probably has been associated with sponges over a long geological time scale. Another symbiont apparently specific to the spongeVerongia aerophoba was found. This sponge is yellow-orange, similar in color to the bacterial symbiont. These symbionts are two of a large mixed bacterial population present in many sponges.This paper constitutes No. V in the series Microbial Associations in Sponges.  相似文献   

18.
Marine invertebrates are sources of a diverse array of bioactive metabolites with great potential for development as drugs and research tools. In many cases, microorganisms are known or suspected to be the biosynthetic source of marine invertebrate natural products. The application of molecular microbiology to the study of these relationships will contribute to basic biological knowledge and facilitate biotechnological development of these valuable resources. The bryostatin-producing bryozoan B. neritina and its specific symbiont "Candidatus Endobugula sertula" constitute one promising model system. Another fertile subject for investigation is the listhistid sponges that contain numerous bioactive metabolites, some of which originate from bacterial symbionts.  相似文献   

19.
Primary B lymphocytes can be induced to proliferate and certain haemopoietic cell lines such as HL60 and U937 can be induced to differentiate by the addition of phorbol esters, which have been shown to activate protein kinase C. Several non-phorbol esters, such as the bryostatins, have also been shown to bind to and activate protein kinase C. Although bryostatin-1 and 12-O-tetradecanoylphorbol-13-acetate (TPA) compete for and activate protein kinase C to the same degree and with similar kinetics and also induce similar levels of expression of the CD23 cell-surface antigen, bryostatin-1 is a weak mitogen for B lymphocytes and fails to induce the differentiation of both HL60 and U937 cells. Such an outcome suggests that these two activators have different binding properties for the enzyme that have a physiological consequence which may be useful for analysing the role that protein kinase C plays in both differentiation and proliferation. Analysis of competition assays between bryostatin-1 and TPA leads us to put forward a model where protein kinase C is required to be constantly reactivated and recycled during proliferation and differentiation which can be accomplished by TPA but not by bryostatin, although we cannot exclude the differential activation of some of the sub-species of the kinase by the two agonists.  相似文献   

20.
The Teredinidae (shipworms) are a morphologically diverse group of marine wood-boring bivalves that are responsible each year for millions of dollars of damage to wooden structures in estuarine and marine habitats worldwide. They exist in a symbiosis with cellulolytic nitrogen-fixing bacteria that provide the host with the necessary enzymes for survival on a diet of wood cellulose. These symbiotic bacteria reside in distinct structures lining the interlamellar junctions of the gill. This study investigated the mode by which these nutritionally essential bacterial symbionts are acquired in the teredinid Bankia setacea. Through 16S ribosomal DNA (rDNA) sequencing, the symbiont residing within the B. setacea gill was phylogenetically characterized and shown to be distinct from previously described shipworm symbionts. In situ hybridization using symbiont-specific 16S rRNA-directed probes bound to bacterial ribosome targets located within the host gill coincident with the known location of the gill symbionts. These specific probes were then used as primers in a PCR-based assay which consistently detected bacterial rDNA in host gill (symbiont containing), gonad tissue, and recently spawned eggs, demonstrating the presence of symbiont cells in host ovary and offspring. These results suggest that B. setacea ensures successful inoculation of offspring through a vertical mode of symbiont transmission and thereby enables a broad distribution of larval settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号