首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole frog sartorius and gastrocnemius muscles were incubated in Ringer's solutions, either unenriched or enriched with H2 17Oor 2D2O. Subsequently, the rates of transverse (1/T2) and of longitudinal (1/T1) nuclear magnetic relaxation were measured for 17O, 2D, and 1H at room temperature and at 8.1 MHz. The ratio (T1/T2) for 17O was measured to be approximately 1.5-2.0, close to the value roughly estimated from the Larmor frequency dependence of 1/T1 alone over the range 4.3-8.1 MHz. On the other hand (T1/T2) for 2D and 1H were both measured to lie in the range 9-11. Insofar as the entire 17O signal was detected, the data indicate the presence of an exchange mechanism between the major fraction of intracellular water and a minor fraction characterized by enhanced rates of relaxation. Possible molecular mechanisms are presented.  相似文献   

2.
Vesicle suspensions of up to 5% egg lecithin and 2.5% cholesterol have been found to have no effect on the NMR relaxation times of 17O from water. Addition of 1-5 mM Mn2+ to an equimolar vesicle suspension of egg lecithin and cholesterol permitted resolution of the free induction decay into two exponential components, a fast one arising from the external water and a slow one arising from the intravesicular fluid. From the rates of relaxation the mean life time of the water molecules within the vesicles was calculated to be 1+/- 0.1 ms at 22 degrees C. The size of the vesicle was estimated from electron micrographs to be about 500 A in diameter. These data yield an equilibrium water permeability, Pw, of about 8 mus-1 for the vesicle membranes. From the temperature dependence of Pw an activation energy of 12+/-2 kcal/mol was obtained. The longitudinal relaxation time (T1) of water within vesicles remained the same as in pure water.  相似文献   

3.
17O NMR relaxation times of water in the serum of rats with various cancers were measured. No systemic effect could be detected at 4.7 and 8.4 T. The serum T1(17O) value was 7.6 +/- 0.5 ms at 37 degrees C independent of the magnetic field. T2(17O) was approximately half T1(17O). The 17O relaxation times could be determined at a faster rate than the 1H relaxation times.  相似文献   

4.
Whole gastrocnemius muscles were incubated in Ringer's solution enriched with H2-17O; the paired contralateral gastrocnemius muscles were incubated in a similar solution enriched with deuterons, as well. Subsequently, the longitudinal relaxation times (T1) were measured 17-O, 2-D, and 1-H, both at 8.1 MHz and at 4.3 MHz. The results indicate that: (a) the absolute values of T1 characterizing the three nuclides are different in muscle and pure water. (b) the longitudinal relaxation rates of all three have an identical frequency dependence over the range studied, (c) the ratio (T1)2D/(T1)17ois the same in muscle water and pure water, while the ratio (T1)1H/(T1)17o is 2.1 times greater in pure water than it is in muscle water, and (d) 30-49 percent substitution of 2-D for 1-H has very little effect on the spin-lattice relaxation of tissue water protons. These data suggest that muscle water is in rapid exchange between a small fraction of immobilized molecules and a large fraction of free water. The results render unlikely the possibility that hypothetical ordering of muscle water significantly contributes to its longitudinal relaxation.  相似文献   

5.
Human erythrocytes were incubated in a Ringer's solution enriched with 10–18% H217O. The longitudinal relaxation time (T1) of the 17O was determined separately in samples of red cell suspesions, packed cells, and supernatant. The longitudinal relaxation of 17O in erythrocyte suspensions was non-exponential, reflecting water exchange across the cell membranes as well as relaxation processes inside and outside the cell.The T1 of intracellular 17O is 4–5 times shorter than in the supernatant, similar to the enhancement of proton relaxation by hemoglobin in erythrocytes and free solution at the frequency applied (8.13 MHz). This datum is consistent with the thesis that hemoglobin modifies the NMR relaxation behavior of water inside cells and in free solution in the same way.The rate constant
for water exchange was calculated to be 60 and 107 s−1 at 25 and at 37° C, respectively. The apparent activation energy for
over the temperature range 23–37° C was 8.7±1.0 kcal/mole.  相似文献   

6.
The complexation of cyclo(Ala*-Ala) with the cobaltous ions in aqueous solution was investigated by 17O and 14N n.m.r. spectroscopy. The 17O and 14N transverse relaxation time (T2p) and chemical shift (delta omega a) of cyclo(Ala*-Ala) were measured as a function of the temperature at pH = 7.03 +/- 0.02, and pH = 6.45 +/- 0.02, and as a function of pH at room temperature. No effects of pH on the transverse relaxation time and chemical shift were observed. Complementary 17O studies of the solvent water molecules were also carried out. The hyperfine coupling constant and the entropy and enthalpy of activation for the exchange of cyclo(Ala*-Ala) and water molecules between the coordinated and noncoordinated states were determined by least-square fit of theoretical equation for the chemical shift delta omega a to experimental data. The hyperfine coupling constant of the peptide bound oxygen was determined to be (-1.6 +/- 0.1) X 10(5) Hz and the entropy and enthalpy (32.0 +/- 3.0) kJ/mol and (-12.0 +/- 1.0) e.u, respectively. Information obtained from 17O n.m.r. study allows some inferences concerning the probable coordination sphere of the cobaltous ion. There are three types of complexes: Co(H2O)6(2+), CoL X 5H2O and CoL2 X 4H2O, with relative concentrations 19.9%, 2.9%, and 77.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
U Banerjee  S I Chan 《Biochemistry》1983,22(15):3709-3713
An NMR relaxation study at 500 MHz of the icosapeptide antibiotic alamethicin is reported. This study lends further support to the partly helical, partly extended, amphiphilic, and dimeric structure recently proposed for this peptide in methanolic solutions [Banerjee, U., Tsui, F. P., Balasubramanian, T. N., Marshall, G. R., & Chan, S. I. (1983) J. Mol. Biol. 165, 757]. The N-acetyl methyl groups toward the N terminus of alamethicin in this solvent system were found to exhibit unusual NMR relaxation behavior. The decay of the transverse magnetization due to these protons was nonexponential, but the spin-lattice relaxation recovery of the longitudinal magnetization was exponential. In a solution saturated with urea, however, both decays were exponential. These observations are shown to be consistent with the proposed structure. Studies in water yielded qualitatively similar but more complex results. The transverse relaxation times suggest further aggregation in water and indicate that the larger aggregates in water may be made up of the smaller units observed in methanol.  相似文献   

8.
Vesicle suspensions of up to 5 % egg lecithin and 2.5 % cholesterol have been found to have no effect on the NMR relaxation times of 17O from water. Addition of 1–5 mM Mn2+ to an equimolar vesicle suspension of egg lecithin and cholesterol permitted resolution of the free induction decay into two exponential components, a fast one arising from the external water and a slow one arising from the intravesicular fluid. From the rates of relaxation the mean life time of the water molecules within the vesicles was calculated to be 1±0.1 ms at 22°C. The size of the vesicle was estimated from electron micrographs to be about 500 Å in diameter. These data yield an equilibrium water permeability, Pw, of about 8 μs−1 for the vesicle membranes. From the temperature dependence of Pw an activation energy of 12±2 kcal/mol was obtained. The longitudinal relaxation time (T1) of water within vesicles remained the same as in pure water.  相似文献   

9.
Spin-lattice (T1) and spin-spin (T2) relaxation times of proton, deuteron, and oxygen-17 in muscle water have been measured at 9.21 MHz in the temperature range of 0 degree--40 degrees C. The values of the apparent activation energy for the three nuclei are (in kJ . mol-1) 9.1, 19, and 18 for 1/T1, and -1.3, 4.2, and 14 for 1/T2, respectively. The relatively small values for T2 for 1H and 2H and their low apparent activation energies are attributed to hydrogen exchange between water and proteins; this exchange does not affect the 17O relaxation. Quantitative calculations on deuteron T1 and oxygen-17 T1 and T2 have been made. The effect of surface-induced anisotropy on a minor fraction of water molecules is considered in some detail, and a new expression for its spectral density similar to that of liquid crystalline systems is applied in the calculation. It is suggested that water on the surfaces of macromolecules has a rotational correlation time of tau c approximately 1 x 10(-9) S, with a time constant of tau x approximately 3 x 10(-7) S, which is characteristic of the relaxation of the local structure.  相似文献   

10.
Relaxation phenomena in human erythrocyte suspensions.   总被引:3,自引:0,他引:3       下载免费PDF全文
Previous work has shown that the application of the Joule heating temperature jump technique of Eigen and de Maeyer to an istonic suspension of human erythrocytes induced an interiorization of [3H-A1glucose and a hemolysis of the red cells (Tsong, T.Y., and E. Kingsley, J. Biol. Chem. 250:786 [1975]). The result was interpreted as due to the thermal osmosis effect. Further considerations of the various effects of the Joule heating technique indicate that the hemolysis of the red cells may also be caused by the rapid dielectric perturbation of the cell membranes. By means of turbidity measurements of the suspensions we have detected at least four relaxation times. Two of the faster ones (tau1 approximately 20 mus and tau2 approximately 5 ms) are tentatively attributed to water relaxations in the membrane structures. The other two are attributed to membrane ruptures (tlag approximately 0.1s) and the hemolysis reaction (tau3 approximately 0.5 s). Studies with the erythrocytes from different hematological disorders indicate that whereas the two slower relaxations are sensitive to the overall physical property of the red cell membranes the two faster relaxations are not. These observations are consistent with the above assignment of the relaxation processes. The apparent activation energies are, above assignment of the relaxation processes. The apparent activation energies are, respectively, 8.4, 12.0, and 11.8 kcal/mol for the tau1, tau2, and tau3 reactions. Experiments with erythrocyte ghosts indicate a single relaxation for the water permeation, and biphasic kinetics for the membrane rupture and resealing reactions. The phenomena reported here may contribute to our understanding of water transport and molecular release in cellular systems.  相似文献   

11.
Nuclear magnetic resonance (nmr) relaxation times are measured for water protons in cross-linked lysozyme crystals below the freezing event as a function of the mole fraction of protons in the water phase. Proton longitudinal nmr relaxation in these samples is nonexponential and the slow longitudinal relaxation component becomes slower linearly with decreasing proton mole fraction in the water. The data are analyzed using a cross relaxation model that eliminates the necessity of postulating long residence times for water molecules in the domain of the protein. The observed isotope dilution behavior is consistent with the cross relaxation model. The deuterium nmr relaxation is also reported for deuterium oxide in the cross-linked protein crystal sample below the freezing event and the relaxation is shown to be accurately exponential.  相似文献   

12.
Contrast in magnetic resonance imaging depends principally on the longitudinal relaxation (R1) and the transverse relaxation rate (R2) of the observed nuclei, most often the protons. The spin-spin relaxation rate (R2) is the result of several mechanisms. The dependence of the interpulse delay of the Carr-Purcell-Meiboom-Gill sequence on the transverse relaxation rate of the water was studied in rat organs in vitro. It gives an insight into the exchange mechanisms involved. The increase of the interpulse delay from 0.2 ms to 5 ms gives an R2 increase of 23, 15, 3, and 2 s-1 for the heart, the liver, the spleen and the brain, respectively. These increases are compared to the R2 increases obtained in 17O-enriched water, amino acid and albumin solutions atomic exchange takes place. The concentration of these materials in organs cannot explain the R2 increase of the organs with the interpulse delay. Water exchange between intra and extracellular compartments is proposed to explain the R2 increase with interpulse delays in organs like the heart and the liver.  相似文献   

13.
1H-NMR relaxation times are reported for native and thermally denatured lysozyme aqueous solutions measured as the function of the proton mole fraction in the sample. A two-exponential character of proton longitudinal relaxation function was observed for native lysozyme solutions: the fast component was attributed to the non-exchangeable protein protons, the slow one to water protons. Purely exponential decay of longitudinal magnetization was observed for the thermally denatured samples. This has been explained in terms of a fast spin exchange model. The contributions of the protein protons to the water proton relaxation rate in native and thermally denatured samples were determined, too.  相似文献   

14.
A Lanir  S Gradstajn  G Navon 《Biochemistry》1975,14(2):242-248
Longitudinal and transverse proton relaxation rates of water in solutions of manganese(II) bovine carbonic anhydrase have been measured by pulsed nuclear magnetic resonance spectrometry as a function of temperature (2-35 degrees), frequently (5-100 MHz) and pH. The pH dependence of the longitudinal relaxation rate was fitted to a sigmoidal curve with a pK value at 7.8, while the esterase activity of the manganese(II) enzyme in the hydrolysis of p-nitrophenyl acetate revealed an inflection point at pK = 8.2. The hydration number of manganese(II) carbonic anhydrase could be derived using either the frequency dependence of T1p or the T1p/T2p ratio at only one (high) frequency. Both treatments are in agreement with a model in which one water molecule is bound to the metal at high pH. At low pH the relaxation data imply that no-H20 exists in the first coordination sphere of the manganese ion. The various parameters which are responsible for the proton relaxation mechanisms have been evaluated and are compared to other manganese(II) enzyme systems. The pH dependence of the binding constant of manganese to apocarbonic anhydrase is also reported.  相似文献   

15.
Water exchange between human red blood cells and the plasma phase was measured by water proton nuclear magnetic resonance relaxation in the presence of low concentrations of Mn(II) and by 17O relaxation of H217O in the absence of added Mn(II). The results were analyzed as a classic case of two-compartment exchange. The half-life for cell water at 25 degrees C was found to be 15 ms +/- 2 ms, longer than the time determined by other techniques. The T1 of the hemoglobin protons in the red cell and the volume of exchangeable water were also measured. The method appears to be a sensitive tool for the study of membrane permeability to water and other small molecules undergoing rapid exchange.  相似文献   

16.
We studied the spin-echo signal of muscle water in a large time domain and found that the motion of the nuclear magnetic moment of tissue water cannot be characterized by a single spin-lattice relaxation time (T1). The relaxation time T1B, which is the T1 characterized by those protons with a slower relaxation rate, is influenced by the early post mortem changes in skeletal muscle. T1B increased with time after the tissue was taken from the animal and reached a maximum at 3 h. However, the weighted average of T1 of all water protons (T1A) did not change throughout the time course of the experiments.  相似文献   

17.
The effects of hydrogen peroxide (H2O2, 1 nM-5 mM) on the tone of the rings of aorta precontracted with phenylephrine (PE) were studied in 4-5 months streptozotocin (STZ)-diabetic rats and their age-matched controls. H2O2 induced brief contraction before relaxation in endothelium-containing rings that was more pronounced in diabetic rats. Removal of the endothelium or pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM) abolished H2O2-induced immediate and transient increase in tone, but preincubation with indomethacin (10 microM) had no effect on contractions induced by H2O2 in both group of animals. Pretreatment with L-NAME or indomethacin as well as absence of endothelium produced an inhibition of H2O2-induced relaxation that was more pronounced in diabetic rings. Chronically STZ-diabetes resulted in a significant increase in H2O2-induced maximum relaxation that was largely endothelium-dependent. Decreased sensitivity (pD2) of diabetic vessels to vasorelaxant action of H2O2 was normalized by superoxide dismutase (SOD, 80 U/ml). Pretreatment with SOD had no effect on H2O2-induced maximum relaxations in both group of animals but led to an increase in H2O2-induced contractions in control rats. When the rings pretreated with diethyldithiocarbamate (DETCA, 5 mM), H2O2 produced only contraction in control rats, and H2O2-induced relaxations were markedly depressed in diabetic rats. H2O2 did not affect the tone of intact or endothelium-denuded rings in the presence of catalase (2000 U/ml). Aminotriazole (AT, 10 mM) failed to affect H2O2-induced contractions or relaxations in all rings. Our observations suggest that increased production of oxygen-derived free radicals (OFRs) in diabetic state leads to a decrease in SOD activity resulting an increase in endogenous superoxide anions (O2*-), that is limited cytotoxic actions, and an increase in catalase activity resulting a decrease in both H2O2 concentrations and the production of harmful hydroxyl radical (*OH) in diabetic aorta in long-term. Present results indicate that increased vascular activity of H2O2 may be an important factor in the development of vascular disorders associated with chronically diabetes mellitus. Enhanced formation of *OH, that is a product of exogenous H2O2 and excess O2*, seems to be contribute to increased relaxations to exogenously added H2O2 in chronically diabetic vessels.  相似文献   

18.
D2O absorbed by intact wool fibers was studied by solid-state 2H nuclear magnetic resonance (NMR) spectroscopy. In wool fibers swollen in D2O, the deuteron transverse magnetization and the spin-locked magnetization revealed a non-exponential decay. At least two NMR phases with different sets of the NMR relaxation parameters, T(1rho) (2H) and T2 2H, have been detected that may be a manifestation of two different morphological phases of the cortex of the fiber.  相似文献   

19.
M Eisenstadt 《Biochemistry》1985,24(14):3407-3421
We have measured T1 and T2 of protein and water protons in hemoglobin solutions using broad-line pulse techniques; selective excitation and detection methods enabled the intrinsic protein and water relaxation rates, as well as the spin-transfer rate between them, to be obtained at 5, 10, and 20 MHz. Water and protein T1 data were also obtained at 100 and 200 MHz for hemoglobin in H2O/D2O mixtures by using commercial Fourier-transform instruments. The T1 data conform to a simple model of two well-mixed spin systems with single intrinsic relaxation times and an average spin-transfer rate, with each phase recovering from a radio-frequency excitation with a biexponential time dependence. At low frequencies, protein T1 and T2 agree reasonably with a model of dipolar relaxation of an array of fixed protons tumbling in solution, explicitly calculating methyl and methylene relaxation and using a continuum approximation for the others. Differing values in H2O and D2O are mainly ascribed to solvent viscosity. For water-proton relaxation, T1, T2, and spin transfer were measured for H2O and HDO, which enabled a separation of inter-and intramolecular contributions to relaxation. Despite such detail, few firm conclusions could be reached about hydration water. But it seems clear that few long-lived hydration sites are needed to explain T1 and T2, and the spin-transfer value mandates fewer than five sites with a lifetime longer than 10(-8) s.  相似文献   

20.
15N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of 15N chemical shielding can be obtained from 15N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from 15N-(1)H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring 15N relaxation in deuterated amide groups in proteins, where the dipolar contribution to 15N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in 15N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse 15N relaxation for backbone amides in protein G in D(2)O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional 15N relaxation measurements in H(2)O. This analysis revealed a 17-24 degree angle between the NH-bond and the unique axis of the 15N chemical shielding tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号