首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of Leishmania mexicana fructose-1,6-bis(phosphate) aldolase in complex with substrate and competitive inhibitor, mannitol-1,6-bis(phosphate), were solved to 2.2 A resolution. Crystallographic analysis revealed a Schiff base intermediate trapped in the native structure complexed with substrate while the inhibitor was trapped in a conformation mimicking the carbinolamine intermediate. Binding modes corroborated previous structures reported for rabbit muscle aldolase. Amino acid substitution of Gly-312 to Ala, adjacent to the P1-phosphate binding site and unique to trypanosomatids, did not perturb ligand binding in the active site. Ligand attachment ordered amino acid residues 359-367 of the C-terminal region (353-373) that was disordered beyond Asp-358 in the unbound structure, revealing a novel recruitment mechanism of this region by aldolases. C-Terminal peptide ordering is triggered by P1-phosphate binding that induces conformational changes whereby C-terminal Leu-364 contacts P1-phosphate binding residue Arg-313. C-Terminal region capture synergizes additional interactions with subunit surface residues, not perturbed by P1-phosphate binding, and stabilizes C-terminal attachment. Amino acid residues that participate in the capturing interaction are conserved among class I aldolases, indicating a general recruitment mechanism whereby C-terminal capture facilitates active site interactions in subsequent catalytic steps. Recruitment accelerates the enzymatic reaction by using binding energy to reduce configurational entropy during catalysis thereby localizing the conserved C-terminus tyrosine, which mediates proton transfer, proximal to the active site enamine.  相似文献   

2.
Tagatose-1,6-bisphosphate aldolase (TBPA) is a tetrameric class II aldolase that catalyzes the reversible condensation of dihydroxyacetone phosphate with glyceraldehyde 3-phosphate to produce tagatose 1,6-bisphosphate. The high resolution (1.45 A) crystal structure of the Escherichia coli enzyme, encoded by the agaY gene, complexed with phosphoglycolohydroxamate (PGH) has been determined. Two subunits comprise the asymmetric unit, and a crystallographic 2-fold axis generates the functional tetramer. A complex network of hydrogen bonds position side chains in the active site that is occupied by two cations. An unusual Na+ binding site is created using a pi interaction with Tyr183 in addition to five oxygen ligands. The catalytic Zn2+ is five-coordinate using three histidine nitrogens and two PGH oxygens. Comparisons of TBPA with the related fructose-1,6-bisphosphate aldolase (FBPA) identifies common features with implications for the mechanism. Because the major product of the condensation catalyzed by the enzymes differs in the chirality at a single position, models of FBPA and TBPA with their cognate bisphosphate products provide insight into chiral discrimination by these aldolases. The TBPA active site is more open on one side than FBPA, and this contributes to a less specific enzyme. The availability of more space and a wider range of aldehyde partners used by TBPA together with the highly specific nature of FBPA suggest that TBPA might be a preferred enzyme to modify for use in biotransformation chemistry.  相似文献   

3.
4.
Class I fructose-1,6-bisphosphate aldolases catalyze the interconversion between the enamine and iminium covalent enzymatic intermediates by stereospecific exchange of the pro(S) proton of the dihydroxyacetone-phosphate C3 carbon, an obligatory reaction step during substrate cleavage. To investigate the mechanism of stereospecific proton exchange, high resolution crystal structures of native and a mutant Lys(146) --> Met aldolase were solved in complex with dihydroxyacetone phosphate. The structural analysis revealed trapping of the enamine intermediate at Lys(229) in native aldolase. Mutation of conserved active site residue Lys(146) to Met drastically decreased activity and enabled trapping of the putative iminium intermediate in the crystal structure showing active site attachment by C-terminal residues 360-363. Attachment positions the conserved C-terminal Tyr(363) hydroxyl within 2.9A of the C3 carbon in the iminium in an orientation consistent with incipient re face proton transfer. We propose a catalytic mechanism by which the mobile C-terminal Tyr(363) is activated by the iminium phosphate via a structurally conserved water molecule to yield a transient phenate, whose developing negative charge is stabilized by a Lys(146) positive charge, and which abstracts the C3 pro(S) proton forming the enamine. An identical C-terminal binding mode observed in the presence of phosphate in the native structure corroborates Tyr(363) interaction with Lys(146) and is consistent with transient C terminus binding in the enamine. The absence of charge stabilization and of a mobile C-terminal catalyst explains the extraordinary stability of enamine intermediates in transaldolases.  相似文献   

5.
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.  相似文献   

6.
K H Choi  J Shi  C E Hopkins  D R Tolan  K N Allen 《Biochemistry》2001,40(46):13868-13875
Fructose-1,6-bis(phosphate) aldolase is an essential glycolytic enzyme found in all vertebrates and higher plants that catalyzes the cleavage of fructose 1,6-bis(phosphate) (Fru-1,6-P(2)) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The structure of the aldolase-DHAP Schiff base has been determined by X-ray crystallography to 2.6 A resolution (R(cryst) = 0.213, R(free) = 0.249) by trapping the catalytic intermediate with NaBH(4) in the presence of Fru-1,6-P(2). This is the first structure of a trapped covalent intermediate for this essential glycolytic enzyme. The structure allows the elucidation of a comprehensive catalytic mechanism and identification of a conserved chemical motif in Schiff-base aldolases. The position of the bound DHAP relative to Asp33 is consistent with a role for Asp33 in deprotonation of the C4-hydroxyl leading to C-C bond cleavage. The methyl side chain of Ala31 is positioned directly opposite the C3-hydroxyl, sterically favoring the S-configuration of the substrate at this carbon. The "trigger" residue Arg303, which binds the substrate C6-phosphate group, is a ligand to the phosphate group of DHAP. The observed movement of the ligand between substrate and product phosphates may provide a structural link between the substrate cleavage and the conformational change in the C-terminus associated with product release. The position of Glu187 in relation to the DHAP Schiff base is consistent with a role for the residue in protonation of the hydroxyl group of the carbinolamine in the dehydration step, catalyzing Schiff-base formation. The overlay of the aldolase-DHAP structure with that of the covalent enzyme-dihydroxyacetone structure of the mechanistically similar transaldolase and KDPG aldolase allows the identification of a conserved Lys-Glu dyad involved in Schiff-base formation and breakdown. The overlay highlights the fact that Lys146 in aldolase is replaced in transaldolase with Asn35. The substitution in transaldolase stabilizes the enamine intermediate required for the attack of the second aldose substrate, changing the chemistry from aldolase to transaldolase.  相似文献   

7.
Joerger AC  Gosse C  Fessner WD  Schulz GE 《Biochemistry》2000,39(20):6033-6041
Previous analyses established the structures of unligated L-fuculose 1-phosphate aldolase and of the enzyme ligated with an inhibitor mimicking the substrate dihydroxyacetone phosphate. These data allowed us to suggest a catalytic mechanism. On the basis of this proposal, numerous mutations were now introduced at the active center and tested with respect to their catalytic rates and their product distributions. For several mutants, the structures were determined. The results demonstrate the catalytic importance of some particular residues in defined conformations and in the mobile C-terminal chain end. Moreover, they led to a modification of the proposed mechanism. The effect of some mutations on enantioselectivity and on the ratio of diastereomer formation indicates clearly the binding site of the aldehyde moiety in relation to the other substrate dihydroxyacetone phosphate.  相似文献   

8.
The structure of L-ribulose-5-phosphate 4-epimerase from E. coli has been solved to 2.4 A resolution using X-ray diffraction data. The structure is homo-tetrameric and displays C(4) symmetry. Each subunit has a single domain comprised of a central beta-sheet flanked on either side by layers of alpha-helices. The active site is identified by the position of the catalytic zinc residue and is located at the interface between two adjacent subunits. A remarkable feature of the structure is that it shows a very close resemblance to that of L-fuculose-1-phosphate aldolase. This is consistent with the notion that both enzymes belong to a superfamily of epimerases/aldolases that catalyze carbon-carbon bond cleavage reactions via a metal-stabilized enolate intermediate. Detailed inspection of the epimerase structure, however, indicates that despite the close overall structural similarity to class II aldolases, the enzyme has evolved distinct active site features that promote its particular chemistry.  相似文献   

9.
The crystal structure of glycogen phosphorylase b in the presence of the weak activator 2 mm-inosine 5′-phosphate has been solved at 3 Å resolution. The binding interactions of the substrate, glucose 1-phosphate, at the catalytic site are described. The nearby presence (6 Å) of the essential co-factor, pyridoxal phosphate, is consistent with biochemical studies but an analysis of the way in which this group might act in catalysis leads to results that are inconsistent with solution studies. Moreover it is difficult to accommodate a glycogen substrate with its terminal glucose in the position defined by glucose 1-phosphate. Model-building studies show that an alternative binding mode for glucose 1-phosphate is possible and that this alternative mode allows a glycogen substrate to be fitted with ease. The alternative binding site leads directly to proposals for the mechanism in which the phosphate group of pyridoxal phosphate acts as a nucleophile and the imidazole of histidine 376 functions as a general acid. It is suggested that these are the essential features of the catalytic mechanism and that, in the absence of the second substrate, glycogen, and in the absence of AMP, the enzyme binds glucose 1-phosphate in a non-productive mode. Conversion of the enzyme to the active conformation through association with AMP may result in conformational changes that direct the binding to the productive mode.  相似文献   

10.
Two new genes whose products are involved in biodegradation of the organic solvent tetralin were identified. These genes, designated thnE and thnF, are located downstream of the previously identified thnD gene and code for a hydratase and an aldolase, respectively. A sequence comparison of enzymes similar to ThnE showed the significant similarity of hydratases involved in biodegradation pathways to 4-oxalocrotonate decarboxylases and established four separate groups of related enzymes. Consistent with the sequence information, characterization of the reaction catalyzed by ThnE showed that it hydrated a 10-carbon dicarboxylic acid. The only reaction product detected was the enol tautomer, 2,4-dihydroxydec-2-ene-1,10-dioic acid. The aldolase ThnF showed significant similarity to aldolases involved in different catabolic pathways whose substrates are dihydroxylated dicarboxylic acids and which yield pyruvate and a semialdehyde. The reaction products of the aldol cleavage reaction catalyzed by ThnF were identified as pyruvate and the seven-carbon acid pimelic semialdehyde. ThnF and similar aldolases showed conservation of the active site residues identified by the crystal structure of 2-dehydro-3-deoxy-galactarate aldolase, a class II aldolase with a novel reaction mechanism, suggesting that these similar enzymes are class II aldolases. In contrast, ThnF did not show similarity to 4-hydroxy-2-oxovalerate aldolases of other biodegradation pathways, which are significantly larger and apparently are class I aldolases.  相似文献   

11.
It was recently established that fructose-1,6-bisphosphate (FBP) aldolase (FBA) and tagatose-1,6-bisphosphate (TBP) aldolase (TBA), two class II aldolases, are highly specific for the diastereoselective synthesis of FBP and TBP from glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), respectively. In this paper, we report on a FBA from the thermophile Thermus caldophilus GK24 (Tca) that produces both FBP and TBP from C(3) substrates. Moreover, the FBP:TBP ratio could be adjusted by manipulating the concentrations of G3P and DHAP. This is the first native FBA known to show dual diastereoselectivity among the FBAs and TBAs characterized thus far. To explain the behavior of this enzyme, the X-ray crystal structure of the Tca FBA in complex with DHAP was determined at 2.2A resolution. It appears that as a result of alteration of five G3P binding residues, the substrate binding cavity of Tca FBA has a greater volume than those in the Escherichia coli FBA-phosphoglycolohydroxamate (PGH) and TBA-PGH complexes. We suggest that this steric difference underlies the difference in the diastereoselectivities of these class II aldolases.  相似文献   

12.
13.
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes.  相似文献   

14.
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (α/β)8 fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys205, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2–C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.  相似文献   

15.
BACKGROUND: The reaction mechanism of methylglyoxal synthase (MGS) is believed to be similar to that of triosephosphate isomerase (TIM). Both enzymes utilise dihydroxyacetone phosphate (DHAP) to form an enediol(ate) phosphate intermediate as the first step of their reaction pathways. However, the second catalytic step in the MGS reaction pathway is characterized by the elimination of phosphate and collapse of the enediol(ate) to form methylglyoxal instead of reprotonation to form the isomer glyceraldehyde 3-phosphate. RESULTS: The crystal structure of MGS bound to formate and substoichiometric amounts of phosphate in the space group P6522 has been determined at 1.9 A resolution. This structure shows that the enzyme is a homohexamer composed of interacting five-stranded beta/alpha proteins, rather than the hallmark alpha/beta barrel structure of TIM. The conserved residues His19, Asp71, and His98 in each of the three monomers in the asymmetric unit bind to a formate ion that is present in the crystallization conditions. Differences in the three monomers in the asymmetric unit are localized at the mouth of the active site and can be ascribed to the presence or absence of a bound phosphate ion. CONCLUSIONS: In agreement with site-directed mutagenesis and mechanistic enzymology, the structure suggests that Asp71 acts as the catalytic base. Further, Asp20 and Asp101 are involved in intersubunit salt bridges. These salt bridges may provide a pathway for transmitting allosteric information.  相似文献   

16.
A coupled enzymatic assay was developed for quantitative determination of the stereoisomeric products formed in aldol reactions catalyzed by dihydroxyacetone phosphate (DHAP)-dependent aldolases. Three of the four stereoisomers could be determined directly; the fourth one was calculated. This procedure is based on the reversibility of the aldol reaction and requires no derivatization or work-up of the product samples, only removal or inactivation of the biocatalyst. In comparison with other methods the enzymatic assay is highly accurate and fast. Determination of isomer formation with 10 different acceptor substrates applying this procedure gave unprecedented insight in the stereochemistry of fructose-1,6-bisphosphate aldolase from Staphylococcus carnosus and l-rhamnulose-1-phosphate aldolase from E. coli.  相似文献   

17.
Rabbit skeletal muscle and liver fructose 1,6-diphosphate aldolases autophosphorylate in the presence of inorganic phosphate at physiological and alkaline pH. ATP as well as nonhydrolyzable ATP analogues inhibits autophosphorylation. Autophosphorylation of aldolases abolishes catalytic activity, which is restored upon treatment with alkaline phosphatase. Limited proteolysis of aldolase preferentially hydrolyzes the COOH terminus and liberates a phosphorylated peptide. Treatment of rabbit aldolases with carboxypeptidase, which liberates the COOH terminal residue Tyr 363, although modifying catalytic activity does not affect autophosphorylation. Amino acid analyses are consistent with results of autophosphorylation of the COOH terminus showing residue His 361 in muscle aldolase and Tyr 361 in liver aldolase. Phosphate lability in acid pH by phosphorylated muscle aldolase but not by phosphorylated liver aldolase corroborates the amino acid assignment. Autophosphorylation of the aldolases in the crystalline state is consistent with an intramolecular mechanism. The pH dependence of autophosphorylation being dependent on the enzyme's physical state (soluble or crystalline) is not inconsistent with crystallization stabilizing a conformer having different amino acid pka values and/or reactivities than those of the soluble state.  相似文献   

18.
Shi L  Liu JF  An XM  Liang DC 《Proteins》2008,72(1):280-288
Glycerophosphodiester phosphodiesterase (GDPD; EC 3.1.4.46) catalyzes the hydrolysis of a glycerophosphodiester to an alcohol and glycerol 3-phosphate in glycerol metabolism. It has an important role in the synthesis of a variety of products that participate in many biochemical pathways. We report the crystal structure of the Thermoanaerobacter tengcongensis GDPD (ttGDPD) at 1.91 A resolution, with a calcium ion and glycerol as a substrate mimic coordinated at this calcium ion (PDB entry 2pz0). The ttGDPD dimer with an intermolecular disulfide bridge and two hydrogen bonds is considered as the potential functional unit. We used site-directed mutagenesis to characterize ttGDPD as a metal ion-dependent enzyme, identified a cluster of residues involved in substrate binding and the catalytic reaction, and we propose a possible general acid-base catalytic mechanism for ttGDPD. Superposing the active site with the homologous structure GDPD from Agrobacterium tumefaciens (PDB entry 1zcc), which binds a sulfate ion in the active site, the sulfate ion can represent the phosphate moiety of the substrate, simulating the binding mode of the true substrate of GDPD.  相似文献   

19.
Site-directed mutagenesis was utilized to study the functional role of the COOH-terminal region in recombinant maize aldolase. A single mutation was created in each of the last nine amino acids of the COOH terminus and characterized kinetically. Point mutations in the COOH-terminal region were found to influence both the rate of fructose 1,6-bisphosphate and fructose 1-phosphate cleavage. Catalytic efficiency, kcat/Km, was not affected by the mutations within experimental error consistent with this region of the COOH terminus modulating product release. Concentrations of the carbanion-enamine enzyme intermediate complex produced upon substrate cleavage increased with the severity of the point mutation. A condensation assay was developed to directly measure fructose 1,6-bisphosphate synthesized by aldolases in the presence of high triose phosphate concentrations. The maximal rate of aldol condensation of triose phosphates, D-glyceralehyde-3-P and dihydroxyacetone-P, was affected by the point mutations to the same extent as the maximal rate of substrate cleavage. Interpretation of the data is consistent with point mutations in the COOH terminus predominantly affecting the proton exchange with the dihydroxyacetone-P enzymatic complex at the carbanion-enamine step and that this step is probably rate-limiting in the catalytic mechanism of recombinant maize aldolase. The role of the COOH-terminal region in aldolases is thus consistent with a sequence dependent modulation of catalytic activity.  相似文献   

20.
2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase that catalyzes aldol condensation of two aldehydes in the active site, which is particularly germane in drug manufacture. Structural and biochemical studies have shown that the active site of DERA is typically loosely packed and displays broader substrate specificity despite sharing conserved folding architecture with other aldolases. The most distinctive structural feature of DERA compared to other aldolases is short and flexible C-terminal region. This region is also responsible for substrate recognition. Therefore, substrate tolerance may be related to the C-terminal structural features of DERA. Here, we determined the crystal structures of full length and C-terminal truncated DERA from Streptococcus suis (SsDERA). In common, both contained the typical (α/β)8 TIM-barrel fold of class I aldolases. Surprisingly, C-terminal truncation resulting in missing the last α9 and β8 secondary elements, allowed DERA to maintain activity comparable to the fulllength enzyme. Specifically, Arg186 and Ser205 residues at the C-terminus appeared mutually supplemental or less indispensible for substrate phosphate moiety recognition. Our results suggest that DERA might adopt a shorter C-terminal region than conventional aldolases during evolution pathway, resulting in a broader range of substrate tolerance through active site flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号