首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to expand areas in which protein microarrays can be used to solve important biological problems, we have investigated ways in which the technique can be employed for functional glycomics. Initially, our protein microarrays were used for the rapid identification of carbohydrate-binding proteins using trifunctional carbohydrate probes and fluorescent dye-labeled polysaccharides. Glycan probes were selectively bound to the corresponding lectins immobilized on the solid surface. In addition, these microarrays were also employed for profiling of carbohydrates on Jurkat T-cell surfaces. These cells adhered to ConA, RCA(120), SNA and WGA, indicating expression of alpha-Man, Gal, NeuNAcalpha2,6Gal and GlcNAc residues on their surfaces. Furthermore, we determined binding affinities between WGA and carbohydrates by measuring IC(50) values of GlcNAc that inhibited 50% of trivalent GlcNAc binding to WGA immobilized on the solid surface. All the experiments show that protein microarrays can be used to study carbohydrate-recognition events in the field of glycomics.  相似文献   

2.
Park S  Lee MR  Shin I 《Nature protocols》2007,2(11):2747-2758
Carbohydrate microarrays have received considerable attention as an advanced technology for the rapid analysis of carbohydrate-protein interactions. This protocol provides detailed procedures for the preparation of carbohydrate microarrays by immobilizing hydrazide-conjugated carbohydrates on epoxide-derivatized glass slides. In addition, we describe the use we make of these microarrays in glycomics research. Unlike other techniques that require large amounts of samples and long assay times, carbohydrate microarrays are used to carry out the rapid assessment of a number of carbohydrate-recognition events with tiny amounts of carbohydrate samples. Furthermore, the microarray technology is also utilized for the rapid assay of enzyme activities. We are able to routinely prepare carbohydrate microarrays within 12 h by using hydrazide-conjugated carbohydrates and apply these microarrays for the studies of glycan-protein interactions within 8 h.  相似文献   

3.
Carbohydrate microarray technologies are new developments at the frontiers of glycomics. Results of 'proof of concept' experiments with carbohydrate-binding proteins of the immune system - antibodies, selectins, a cytokine and a chemokine - and several plant lectins indicate that microarrays of carbohydrates (glycoconjugates, oligosaccharides and monosaccharides) will greatly facilitate not only surveys of proteins for carbohydrate-binding activities but also elucidation of their ligands. It is predicted that both naturally occurring and synthetic carbohydrates will be required for the fabrication of microarrays that are sufficiently comprehensive and representative of entire glycomes. New leads to biological pathways that involve carbohydrate-protein interactions and new therapeutic targets are among biomedically important outcomes anticipated from applications of carbohydrate microarrays.  相似文献   

4.
Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a class of glycoconjugates that is challenging to study, recognized by toxins, antibodies and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. We separated fluorescent GSLs by multidimensional chromatography, quantified them and coupled them to glass slides to create GSL shotgun microarrays. Then we interrogated the microarrays with cholera toxin, antibodies and sera from individuals with Lyme disease to identify biologically relevant GSLs that we subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans is an approach for accessing the complex glycomes of animal cells and is a strategy for focusing structural analyses on functionally important glycans.  相似文献   

5.
糖芯片是生物芯片的一种,是继基因芯片、蛋白质芯片、组织芯片等之后发展起来的一种很有前景的生物检测技术。随着糖生物学和糖组学的研究进展,糖芯片正逐步发展为该领域的新型研究手段。介绍了糖芯片技术及其制作方法,高通量分析平台以及糖芯片在生物学研究和医学领域的具体应用,同时也对糖芯片技术的发展进行了展望。  相似文献   

6.
Generating proteomic maps of membrane proteins, common targets for therapeutic interventions and disease diagnostics, has turned out to be a major challenge. Antibody-based microarrays are among the novel rapidly evolving proteomic technologies that may enable global proteome analysis to be performed. Here, we have designed the first generation of a scaleable human recombinant scFv antibody microarray technology platform for cell surface membrane proteomics as well as glycomics targeting intact cells. The results showed that rapid and multiplexed profiling of the cell surface proteome (and glycome) could be performed in a highly specific and sensitive manner and that differential expression patterns due to external stimuli could be monitored.  相似文献   

7.

Introduction

Glycans have unique characteristics that are significantly different from nucleic acids and proteins in terms of biosynthesis, structures, and functions. Moreover, their isomeric nature and the complex linkages between residues have made glycan analysis a challenging task. Disease development and progression are usually associated with alternations in glycosylation on tissue proteins and/or blood proteins. Glycans released from tissue/blood proteins hence provide a valuable source of biomarkers. In this postgenome era, glycomics is an emerging research field. Glycome refers to a repertoire of glycans in a tissue/cell type, while glycomics is the study of glycome. In the past few years, attempts have been made to develop novel methodologies for quantitative glycomic profiling and to identify potential glycobiomarkers. It can be foreseen that glycomics holds the promise for biomarker discovery. This review provides an overview of the unique features of glycans and the historical applications of such features to biomarker discovery.

Future Prospective

The concept of glycomics and its recent advancement and future prospective in biomarker research are reviewed. Above all, there is no doubt that glycomics is gaining momentum in biomarker research.  相似文献   

8.
Glycomics and glycoproteomics have become indispensible tools in the study of glycoconjugates. Mass spectrometry based methods are standardly used to study the proteome and/or glycome and these approaches are capable of providing both, qualitative and quantitative information using top down techniques. The human immune system marks a particular area of interest for glycomics and glycoproteomics research since a large number of key proteins in innate and adaptive immunity are glycoproteins. In numerous examples, the crucial influence of glycosylation on critical steps such as receptor interaction and binding has been demonstrated. In this review, we focus on different glycomics and glycoproteomics approaches and their application for studying protein glycosylation in the immune system.  相似文献   

9.
Heparan sulfate: anchor for viral intruders?   总被引:8,自引:0,他引:8  
Spillmann D 《Biochimie》2001,83(8):811-817
Heparan sulfates (HS) are ubiquitous, polyanionic carbohydrate chains linked to core proteins in cell membranes and extracellular matrices of all eukaryotes. Due to the complex nature of the HS-biosynthesis, a wealth of different structures are produced. These seem to have a well defined distribution in different tissues and cells throughout development. Binding of endogenous proteins with different functional properties such as growth factors, adhesion molecules or enzymes, is one of the functions of HS. Besides interaction with endogenous factors, glycosaminoglycans (GAG) and especially HS have also been demonstrated to function as receptors for a number of different pathogens. What roles may HS play in the pathogenesis and tropism of different intruders like parasites or viruses? What implications does binding of viruses to HS have for the development of drugs or the application of viral vectors for gene targeting? In this review an attempt is made to collect our present knowledge on viral usage of HS and the implications that follow.  相似文献   

10.
Techniques involving solid supports have played crucial roles in the development of genomics, proteomics, and in molecular biology in general. Similarly, methods for immobilization or attachment to surfaces and resins have become ubiquitous in sequencing, synthesis, analysis, and screening of oligonucleotides, peptides, and proteins. However, solid-phase tools have been employed to a much lesser extent in glycobiology and glycomics. This review provides a comprehensive overview of solid-phase chemical tools for glycobiology including methodologies and applications. We provide a broad perspective of different approaches, including some well-established ones, such as immobilization in microtiter plates and to cross-linked polymers. Emerging areas such as glycan microarrays and glycan sequencing, quantum dots, and gold nanoparticles for nanobioscience applications are also discussed. The applications reviewed here include enzymology, immunology, elucidation of biosynthesis, and systems biology, as well as first steps toward solid-supported sequencing. From these methods and applications emerge a general vision for the use of solid-phase chemical tools in glycobiology.  相似文献   

11.
12.
Immunization with whole cells has been used extensively to generate monoclonal antibodies, produce protective immune responses, and discover new disease antigens. While glycans are abundant on cell surfaces, anti-glycan immune responses have not been well-characterized. We used glycan microarrays to profile 49 tumor-binding monoclonal antibodies generated by immunizing mice with whole cancer cells. A substantial proportion (41%) of the tumor binding antibodies bound carbohydrate antigens. The antibodies primarily recognize a group of 5 glycan antigens: Sialyl Lewis A (SLeA), Lewis A (LeA), Lewis X (LeX), blood group A (BG-A), and blood group H on a type 2 chain (BG-H2). The results have important implications for monoclonal antibody production and cancer vaccine development.  相似文献   

13.
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.  相似文献   

14.
Carbohydrate-protein interactions play important biological roles in biological processes. But there is a lack of high-throughput methods to elucidate recognition events between carbohydrates and proteins. This paper reported a convenient and efficient method for preparing oligosaccharide microarrays, wherein the underivatized oligosaccharide probes were efficiently immobilized on aminooxyacetyl functionalized glass surface by formation of oxime bonding with the carbonyl group at the reducing end of the suitable carbohydrates via irreversible condensation. Prototypes of carbohydrate microarrays containing 10 oligosaccharides were fabricated on aminooxyacetyl functionalized glass by robotic arrayer. Utilization of the prepared carbohydrate microarrays for the characterization of carbohydrate-protein interaction reveals that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. The limit of detection (LOD) for lectin ConA on the fabricated carbohydrate microarrays was determined to be approximately 0.008 microg/mL. Inhibition experiment with soluble carbohydrates also demonstrated that the binding affinities of lectins to different carbohydrates could be analyzed quantitatively by determining IC(50) values of the soluble carbohydrates with the carbohydrate microarrays. This work provides a simple procedure to prepare carbohydrate microarray for high-throughput parallel characterization of carbohydrate-protein interaction.  相似文献   

15.
Annexin A1 is a multifunctional, calcium-dependent phospholipid binding protein involved in a host of processes including inflammation, regulation of neuroendocrine signaling, apoptosis, and membrane trafficking. Binding of annexin A1 to glycans has been implicated in cell attachment and modulation of annexin A1 function. A detailed characterization of the glycan binding preferences of annexin A1 using carbohydrate microarrays and surface plasmon resonance served as a starting point to understand the role of glycan binding in annexin A1 function. Glycan array analysis identified annexin A1 binding to a series of sulfated oligosaccharides and revealed for the first time that annexin A1 binds to sulfated non-glycosaminoglycan carbohydrates. Using heparin/heparan sulfate microarrays, highly sulfated heparan sulfate/heparin were identified as preferred ligands of annexin A1. Binding of annexin A1 to heparin/heparan sulfate is calcium- but not magnesium-dependent. An in-depth structure-activity relationship of annexin A1-heparan sulfate interactions was established using chemically defined sugars. For the first time, a calcium-dependent heparin binding protein was characterized with such an approach. N-Sulfation and 2-O-sulfation were identified as particularly important for binding.  相似文献   

16.
糖类抗原125(CA125)被认为是卵巢癌诊断的“金标准”,但在临床应用中普遍存在着特异性不高的问题.肿瘤形成和发展过程中常伴有糖基化修饰异常和糖链结构的改变,不同的肿瘤具有特异的异常糖链结构.近年来,借助凝集素芯片、多重质谱分析等糖蛋白组学和糖组学研究技术,发现不同来源CA125的O-糖链和N-糖链结构存在着明显的微观不均一性,以这些特征性糖链结构为标志物,可以显著提高CA125对卵巢癌的诊断特异性.在过去的10年,研究者们除对CA125糖链结构和糖基化模式做了深入的研究外,还利用糖组的研究方法,直接对来自卵巢癌患者血液、体液(腹水、囊泡液等)中糖蛋白的糖链做了精细的结构解析,结果显示,可有效鉴别卵巢癌患者和健康志愿者的特异性N-糖链结构,有可能成为灵敏度高和特异性好的卵巢癌生物标志物.卵巢癌生物标志物研究发展的总趋势是从传统的对蛋白质的定性和定量研究,逐步转向于对标志物糖基化修饰和特异性糖链结构的鉴定以及定量分析.本文从糖组学的视角,对卵巢癌标志物糖组学的研究现状及发展趋势进行了综述和展望.  相似文献   

17.
Global glycomics of human whole serum glycoproteins appears to be an innovative and comprehensive approach to identify surrogate non-invasive biomarkers for various diseases. Despite the fact that quantitative glycomics is premised on highly efficient and reproducible oligosaccharide liberation from human serum glycoproteins, it should be noted that there is no validated protocol for which deglycosylation efficiency is proven to be quantitative. To establish a standard procedure to evaluate N-glycan release from whole human serum glycoproteins by peptide-N-glycosidase F (PNGase F) treatment, we determined the efficiencies of major N-glycan liberation from serum glycoproteins in the presence of reducing agents, surfactants, protease treatment, or combinations of pretreatments prior to PNGase F digestion. We show that de-N-glycosylation efficiency differed significantly depending on the condition used, indicative of the importance of a standardized protocol for the accumulation and comparison of glycomics data. Maximal de-N-glycosylation was achieved when serum was subjected to reductive alkylation in the presence of 2-hydroxyl-3-sulfopropyl dodecanoate, a surfactant used for solubilizing proteins, or related analogues, followed by tryptic digestion prior to PNGase F treatment. An optimized de-N-glycosylation protocol permitted relative and absolute quantitation of up to 34 major N-glycans present in serum glycoproteins of normal subjects for the first time. Moreover PNGase F-catalyzed de-N-glycosylation of whole serum glycoproteins was characterized kinetically, allowing accurate simulation of PNGase F-catalyzed de-N-glycosylation required for clinical glycomics using human serum samples. The results of the current study may provide a firm basis to identify new diagnostic markers based on serum glycomics analysis.  相似文献   

18.
氨基糖苷类抗生素是一类广谱型抗细菌感染药物,其不断增加的细菌耐药性很大程度上限制了它的临床应用,研究和开发新型氨基糖苷类抗生素具有重要意义。将氨基糖苷类抗生素固定到玻璃片基上,制成糖芯片,再分别与荧光标记的RNAs和蛋白质杂交,通过分析杂交后的荧光信号强度检测它们之间的相互作用。结果显示,氨基糖苷类抗生素芯片可以特异性地与r RNA的A位点模拟物、I型核酶和蛋白酶结合。因此糖芯片技术不仅可以检测氨基糖苷类抗生素与r RNAs的特异性结合,而且可以应用于寻找新型RNA结合配体的研究,为快速鉴定和筛选可紧密结合RNA靶标且毒性较低的新型氨基糖苷类抗生素奠定了一定的基础。  相似文献   

19.
Tudor, MBT and chromo domains gauge the degree of lysine methylation   总被引:15,自引:0,他引:15  
  相似文献   

20.
Antibody microarrays have been successfully used to determine relative abundance of key proteins in various cancers and other diseases. We have previously showed liver metastatic-related genes between the metastatic pancreatic cancer line (SW1990HM) and its parental line (SW1990). In this study, we searched for potential markers for metastatic progression using antibody microarrays. The SpringBio Antibody Microarrays were used to analysis the different proteomes between SW1990HM and SW1990 cells. A standard ≥2.0-fold cutoff value was used to determine differentially expressed proteins and Western blotting analysis further confirmed the results. Antibody microarrays revealed that 40 proteins were reproducibly altered more than 2-fold between the selected variant and its parental counterpart; 14 of the proteins were up-regulated, and 26 were down-regulated. Most of the up-regulated proteins (7/14) play a role in tumor signal transduction, while a number of down-regulated proteins (10/26) function in cell differentiation; this might be crucial for pancreatic cancer metastasis. Four dysregulated proteins were validated by western blotting in the cell lines. Interestingly, the up-regulation of Glucagon and down-regulation of Prolactin were further confirmed in the culture supernatants by western blotting. These proteomic data are valuable for understanding pancreatic cancer metastasis and searching for potential markers of metastatic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号