首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine and terrestrial ecosystems are connected via transfers of nutrients and organic matter in river discharges. In coastal seas, such freshwater outflows create prominent turbidity plumes. These plumes are areas of high biological activity in the pelagos, of which zooplankton is a key element. Conceptually, the increased biomass of zooplankton consumers in plumes can be supported by two alternative trophic pathways—consumption of fresh marine phytoplankton production stimulated by riverine nutrients, or direct trophic subsidies through the uptake of terrestrial and estuarine organic matter flushed to sea. The relative importance of these two pathways has not been established previously. Isotopic tracing (carbon and nitrogen) was used to measure the extent of incorporation of marine versus terrestrial matter into mesozooplankton consumers in the plumes off a small estuary in eastern Australia. Replicate zooplankton samples were taken during baseflow conditions with minimal freshwater influence to the sea, and during pulsed discharge events that generated turbidity plumes in coastal waters. Food sources utilized by zooplankton differed among locations and with the strength of freshwater flow. Terrestrial and estuarine carbon only made a sizeable contribution (47%) to the carbon demands of zooplankton in the lower estuary during pulsed freshwater flows. By contrast, in plumes that developed in nearshore marine waters, phytoplankton supplied up to 90% of the dietary carbon of zooplankton feeding in the plumes. Overall, it was “fresh” carbon, fixed by marine phytoplankton, the growth of which became stimulated by fluvial nutrient exports, that dominated energy flows in plume regions. The trophic role of terrestrial and estuarine organic exports was comparatively minor. The trophic dynamics of plankton in small coastal plumes is closely linked to variations in freshwater flow, but this coupling operates mainly through the enhancement of in-situ phytoplankton production rather than cross-boundary transfers of organic matter to marine food webs in the pelagos.  相似文献   

2.
In southern Brazil, cold ( La Niña ) and warm ( El Niño ) episodes of the El Niño Southern Oscillation (ENSO) phenomenon cause drought and high rainfall, respectively. The low precipitation and freshwater outflow associated with La Niña during 1995–1996 were associated with an increase in the abundance of marine species in the Patos Lagoon estuary. During the 1997–1998 El Niño , high precipitation and river discharge were associated with low abundance of marine species in the estuary. ANOVA results showed a higher abundance during La Niña than El Niño for estuarine resident (RES) and estuarine dependent (DEP) fishes. During La Niña catch per unit of effort (CPUE) of RES increased from the marine to estuarine area, but during El Niño CPUE increased at the marine area and diminished during summer and autumn in some estuarine sites. DEP fishes had an opposite abundance pattern. During La Niña , these fishes were abundant at the coastal marine area and along some estuarine sites, but during El Niño , CPUE remained almost the same at the marine area but dropped along some estuarine sites. These different abundance patterns for dominant fish groups yielded a positive interaction between stations and climatic events. With higher river discharge and the consequent decline of dominant euryhaline fishes, such as Mugil platanus and Atherinella brasiliensis , freshwater species increased in abundance and richness in the shallow waters of the stuary. The ENSO phenomenon influences precipitation and estuarine salinity in southern Brazil and thereby seems to have a strong influence on recruitment, immigration, and emigration dynamics of fish species living within and adjacent to estuarine habitats.  相似文献   

3.
Movement patterns and habitat utilization by black bream Acanthopagrus butcheri (Sparidae), an estuarine resident species, were investigated using acoustic telemetry in a small estuary on the east coast of Tasmania, Australia. Thirty‐four adult A. butcheri were tracked for periods of up to 187 days between August 2005 and January 2006. Although able to tolerate a wide range of salinities, the fish spent most of the time within the upper and middle regions of the estuary, where brackish conditions dominated. The species exhibited extensive movements linked to tidal cycles, with small‐scale upstream movements during incoming tides and downstream movements during out going tides. The extent of these movements was positively correlated with the tidal height difference between consecutive tidal peaks and troughs. Freshwater inflows and resultant changes in salinity also significantly influenced distribution and movement patterns. Fish moved downstream during the periods of heavy inflows, returning upstream as salinities increased to c. >10. During the peak of spawning period (November to December) fish moved into the upper region of the estuary, where they aggregated to spawn. Periodic increases in freshwater discharge, however, resulted in fish leaving the spawning grounds and moving downstream. Towards the end of the spawning season (January), the fish became more dispersed throughout the entire estuarine system.  相似文献   

4.
Wissel B  Fry B 《Oecologia》2005,144(4):659-672
The Breton Sound estuary in southern Louisiana receives large amounts of Mississippi River water via a controlled diversion structure at the upstream end of the estuary. We used stable isotopes to trace spatial and seasonal responses of the downstream food web to winter and spring introductions of river water. Analysis of δ13C, δ15N, and δ34S in the common local consumers such as grass shrimp (Palaemonetes sp.), barnacles (Balanus sp.), and small plankton-feeding fish (bay anchovies, Anchoa mitchilli) showed that the diversion was associated with two of the five major source regimes that were supporting food webs: a river regime near the diversion and a river-influenced productive marsh regime farther away from the diversion. Mixing models identified a third river-influenced source regime at the marine end of the estuary where major natural discharge from the Bird’s Foot Delta wraps around into estuarine waters. The remaining two source regimes represented typical estuarine conditions: local freshwater sources especially from precipitation and a brackish source regime representing higher salinity marine influences. Overall, the Mississippi River diversion accounted for 75% of food web support in the upper estuary and 25% in the middle estuary, with influence strongest along known flow pathways and closest to the diversion. Isotopes also traced seasonal changes in river contributions, and indicated increased plant community productivity along the major flow path of diversion water. In the Breton Sound estuary, bottom–up forcing of food webs is strongly linked to river introductions and discharge, occurring in spatial and temporal patterns predictable from known river input regimes and known hydrologic circulation patterns.  相似文献   

5.
The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the class Proteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genus Cytophaga or of the alpha, gamma, or delta subclass of the class Proteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (beta-proteobacteria, gram-positive bacteria, and Verrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and alpha-proteobacteria [SAR11 and Rhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.  相似文献   

6.
The fish faunas of the four Mhlathuze coastal lakes and the lower river comprise a diverse assortment of over fifty marine, estuarine and freshwater species. Three freshwater species are endemic to KwaZulu-Natal and nine estuarine species are endemic to southern Africa. Five species are of conservation significance. Species numbers in Lakes Mzingazi and Cubhu are similar historically and both lakes served as secondary nursery habitats for estuarine associated fishes. This role has been impacted by the construction of weirs at their outlets which prevent successful recruitment of estuarine species, especially during drought years when lake water levels are low. The fish faunas of Lakes Nsezi and Mangeza are depauperate and lack marine or estuarine components. In order that these systems fulfil their potential function as secondary nursery habitats to many estuarine fish species, minimum lake water levels must be set to ensure sufficient outflows at proposed fish ladders during critical spawning and migration times.  相似文献   

7.
The littoral and demersal ichthyofaunal community structure in the freshwater-deprived, permanently open Kariega Estuary was investigated following heavy rain in November 2006 and was compared to low-flow condition data from 1991 and 1996. All surveys took place during the spring months and allowed for a comparison of a wet and a dry spring period. The 2006 freshwater pulse generated a strong horizontal salinity gradient within the estuary. In the absence of freshwater inflow, the ichthyofaunal community in the littoral zone was numerically dominated by estuarine resident species, whilst after the freshwater pulse an increased contribution of marine migrant species was observed. Within the demersal zone, marine straggler species dominated during the dry spring period and estuarine residents during the wet spring period. Numerical analyses of the littoral and demersal fish assemblages indicated the presence of three distinct groupings — corresponding to the upper and middle reaches during separate wet and dry periods, and a community associated with the lower reaches of the estuary. It is suggested that the shift in community structure between the dry and wet spring periods could be related to altered physico-chemical and trophic conditions within the estuary, as well as the increased presence of freshwater and estuarine olfactory cues within the coastal zone, which would have resulted in the recruitment of 0+ estuary-associated marine species into the Kariega system.  相似文献   

8.
The characteristics of the Atlantic salmon (Salmo salar) smolt run of the Rivière Saint-Jean, Quebec, Canada, in 2009 and 2010 were determined using acoustic telemetry. Tagged smolts were tracked from freshwater release sites for 17 km, then through the estuary and for their entry into the Gulf of St. Lawrence. The smolt migration began in both years at water temperatures of 10 °C, but lasted twice as long in the cooler year. The smolts in 2009 crossed the river to ocean boundary faster than the smolts of 2010, despite being similar in size. Smolt speed over ground increased from the river to the estuary to the marine environment. Smolts migrated both during the day and the night, but most movements began near or just after sunset, with increasingly nocturnal movements in the ocean. Smolts crossed the estuary during ebbing tides and moved faster during the night than the day. The tide cycle also influenced estuarine smolt travelling rates, but only secondarily to the diel cycle.  相似文献   

9.
Estuaries are used by anadromous fishes, either as the definitive marine habitat or as transition habitat as they move to fully marine waters, and extent of estuary use may vary with habitat conditions and fish attributes. Bull trout (Salvelinus confluentus) are commonly fluvial or adfluvial, though anadromous populations also exist. However, little is known about estuary use, especially by juveniles of this threatened species. We sampled the estuaries of the Elwha River, where a spawning population exists, and the nearby Salt Creek, where none exists, to reveal seasonal timing of estuarine use by juvenile bull trout, size of those using the estuary, and possible use of the non-natal estuary. We captured juvenile bull trout (all ≥100 mm FL, most <300 mm) in the Elwha River estuary in all months except August, but primarily December through May. None was captured in Salt Creek’s estuary despite comparable sampling effort. We also evaluated how dam removal on the Elwha River influenced bull trout estuarine occupancy by sampling before, during, and after dam removal, because this process enlarged the estuary but also increased turbidity and sediment transport in the lower river. Catches were low before dam removal, increased during and immediately after removal, and returned to low levels in recent years, suggesting that juveniles temporarily sought refuge from conditions associated with dam removal. Our findings indicate juvenile bull trout occupy estuarine habitat opportunistically; this information may aid conservation efforts as anadromous populations occur elsewhere in rivers with estuaries altered by human development.  相似文献   

10.
The recent, rapid spreading of non-native pink salmon Oncorhynchus gorbuscha in the North Atlantic area has raised concerns about their possible negative impacts on native salmonid species. Potential interactions include competition for food resources during the short freshwater phase of juvenile O. gorbuscha, but little is known about their feeding behavior in the newly occupied North Atlantic rivers. Using stable isotope and stomach content analyses, patterns of freshwater feeding of non-native O. gorbuscha fry were studied in a large Fennoscandian river, the Teno, that discharges to the Barents Sea. Changes in stable isotope values (δ13C, δ15N, δ34S) and stomach contents from the period of emergence (April to mid-May) to estuarine entry (late May/June) were examined and provided both temporally integrated and short-term indicators of freshwater feeding dependency. In addition, the occurrence of juvenile O. gorbuscha and changes in their length and weight during their emergence/migration period were investigated. Juvenile O. gorbuscha were at the spawning grounds from April through to mid-May with abundance peaking in mid-May. Fish moved to the estuary by late May and their abundance decreased toward June, and their body size increased concurrently. Stomach analyses indicated no feeding activity in April–early May in the spawning areas, but the stomach fullness indices increased markedly in fish sampled in the estuary in May and June. The most important prey items in stomachs were Chironomidae and Ephemeroptera larvae. Significant changes in all analysed stable isotopes were detected among sample periods, with a peak in mid-May and June showing significantly lower values than other sample periods. A change from the higher values reflective of parental marine feeding to the lower values reflective of freshwater feeding indicated active in-river feeding by juveniles during the study period. The documented active freshwater feeding of non-native juvenile O. gorbuscha suggests potential resource competition with native fluvial fishes, particularly salmonids.  相似文献   

11.
12.
For crab larvae, swimming behaviors coupled with the movement of tides suggests that larvae can normally move upstream within estuaries by avoiding ebb tides and actively swimming during flood tides (i.e., flood-tide transport [FTT]). Recently, a 1-D transport model incorporating larval behavior predicted that opposing forces of river discharge and tidal amplitude in the Pee Dee River/Winyah Bay system of South Carolina, USA, could limit dispersal within a single estuary for downstream transport as well as become a dispersal barrier to recruitment of late stage larvae to the freshwater adult habitats of Uca minax (LeConte 1855). We sequenced 394-bp of the mitochondrial cytochrome apoenzyme b for 226 adult U. minax, from four locales along a 49-km stretch of the Pee Dee River/Winyah Bay estuary, above and below the boundary of salt intrusion. Results of an analysis of molecular variance (AMOVA) and an exact test of population differentiation showed a small, but statistically significant (α=0.05) population subdivision among adults of the 4 subpopulations, as well as all subpopulations being significantly differentiated (α=0.05). This pattern fitted with model predictions, which implies that larval transport within the tidally influenced river system is limited.  相似文献   

13.
In the low-salinity area of many macrotidal estuaries, through the combination of tidal pumping and estuarine circulation, an estuarine turbidity maximum (ETM) develops providing favorable conditions for various organisms. To investigate ecological roles of the ETM in East Asian estuaries, we conducted seasonal observations in the Geum (or Keum) River estuary, one of the representative macrotidal estuaries flowing into the Yellow Sea, from 2007 to 2008. The estuary was frequently filled with high-salinity (>10 PSU) and low-turbidity (<100 NTU) water under small or no freshwater discharge from a dam (ca. 8 km upstream from the river mouth). Brackish water was, however, completely pushed out of the estuary within a few hours after an intensive discharge in summer. Chlorophyll a (up to 50 μg l−1) and pheophytin (up to 80 μg l−1) were concentrated in a low-salinity (<1 PSU) and high-turbidity (up to 1000 NTU) area, indicating that the intensive discharge transported both living phytoplankton and resuspended detritus into the area. In contrast, a phytoplankton bloom (chlorophyll a, up to 100 μg l−1) was observed at low salinities under little discharge in winter. The present study demonstrated an absence of the ETM suitable for estuarine-dependent organisms from the present Geum River estuary, indicating potential importance of adequate control of freshwater discharge for the formation and maintenance of the ETM.  相似文献   

14.
A comparative analysis of fish estuary association guilds was undertaken on some 190 South African estuaries. This pioneering study spanned three zoogeographic regions and included three broad estuarine types. The guild compositions of the estuaries were compared based on an importance value, incorporating taxonomic composition, numerical abundance and relative biomass. Multivariate analyses included both inter‐regional (zoogeographic) and intra‐regional (estuarine typology) comparisons. The major estuary‐associated guilds (estuarine species and marine migrant species) were important in all estuary types within all biogeographic regions. Significant differences both between regions and between estuary types within regions, however, were recorded. Cool–temperate estuaries were generally dominated by migratory species (estuarine migrants and marine migrant opportunists) while the importance of species dependent on estuaries (estuarine residents and estuarine‐dependent marine migrants) was higher in warm–temperate and subtropical regions. The significance of estuarine nursery areas, particularly in regions where estuaries are few in number, is highlighted. In terms of typology, migratory species assumed a greater importance in predominantly open systems, while freshwater and estuarine‐resident species were more important in predominantly closed systems. Predominantly closed estuaries, however, were also important for marine migrant species, which further highlights the significance of these systems as nursery areas for fishes.  相似文献   

15.
The nutritional condition and protein growth rates of Japanese temperate bass larvae and juveniles were studied in relation to prey distribution and feeding habits in the nursery grounds in Chikugo estuary, Ariake Sea, Japan. Samples were collected from a wide spatial area covering the nursery grounds of the fish in March and April 2003. Food habits of the fish were analyzed by examining the gut contents. Fish condition was evaluated by using RNA/DNA ratio and other nucleic acid-based indices and protein growth rates. The nucleic acid contents in individually frozen larvae and juveniles were quantified by fluorometric method. Two distinguished feeding patterns, determined by the distribution of prey copepods, were identified along the nursery ground. The first pattern showed the dependency of the fish on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low saline upper river areas and the second pattern involved a multi-species dietary habit mainly dominated by Acartia omorii, Oithona davisae and Paracalanus parvus. Values of RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices were higher in upstream areas than in the downstream areas. The proportion of the starving fish was higher in the downstream areas than in the upstream areas. Condition of juvenile sea bass was not equal throughout the nursery grounds; fish in the upper river were in better condition than those in the lower estuary. We speculated that utilization of S. sinensis, which appears a suitable prey item and provide a better foraging environment in the upstream nursery ground, is one of the key factors for early survival and growth of Japanese temperate bass larvae and juveniles in the Chikugo estuary.  相似文献   

16.
Little is known about where anguilliform fishes complete metamorphosis from the leptocephalus to juvenile stage. Conger myriaster leptocephali in the final stages of metamorphosing were collected from the estuarine portions of the lower Rokkaku River and in the northwest region of Ariake Bay. Three metamorphosing leptocephali with PAM/TM ratios of 0.27–0.34 were collected in the lower river, and five (PAM/TM, 0.30–0.46) were collected at sea stations in the bay. The collection of metamorphosing larvae of this species in a river estuary with lower salinity and high turbidity raises the question of how much these habitats are used by the metamorphosing larvae of this marine eel species.  相似文献   

17.
Conceptual models for tidal period and low-frequency variations in sea level, currents, and mixing processes in the northern and southern reaches of San Francisco Bay describe the contrasting characteristics and dissimilar processes and rates in these embayments: The northern reach is a partially mixed estuary whereas the southern reach (South Bay) is a tidally oscillating lagoon with density-driven exchanges with the northern reach.The mixed semidiurnal tides are mixtures of progressive and standing waves. The relatively simple oscillations in South Bay are nearly standing waves, with energy propagating down the channels and dispersing into the broad shoal areas. The tides of the northern reach have the general properties of a progressive wave but are altered at the constriction of the embayments and gradually change in an upstream direction to a mixture of progressive and standing waves. The spring and neap variations of the tides are pronounced and cause fortnightly varying tidal currents that affect mixing and salinity stratification in the water column.Wind stress on the water surface, freshwater inflow, and tidal currents interacting with the complex bay configuration are the major local forcing mechanisms creating low-frequency variations in sea level and currents. These local forcing mechanisms drive the residual flows which, with tidal diffusion, control the water-replacement rates in the estuary. In the northern reach, the longitudinal density gradient drives an estuarine circulation in the channels, and the spatial variation in tidal amplitude creates a tidally-driven residual circulation. In contrast, South Bay exhibits a balance between wind-driven circulation and tidally-driven residual circulation for most of the year. During winter, however, there can be sufficient density variations to drive multilayer (2 to 3) flows in the channel of South Bay.Mixing models (that include both diffusive and dispersive processes) are based on time scales associated with salt variations at the boundaries and those associated with the local forcing mechanisms, while the spatial scales of variations are dependent upon the configuration of the embayments. In the northern reach, where the estuarine circulation is strong, the salt flux is carried by the mean advection of the mean salt field. Where large salinity gradients are present, the tidal correlation part of the salt flux is of the same order as the advective part. Our knowledge of mixing and exchange rates in South Bay is poor. As this embayment is nearly isohaline, the salt flux is dominated entirely by the mean advection of the mean salt field. During and after peaks in river discharge, water mixing becomes more dynamic, with a strong density-driven current creating a net exchange of both water mass and salt. These exchanges are stronger during neap tides.Residence times of the water masses vary seasonally and differ between reaches. In the northern reach, residence times are on the order of days for high winter river discharge and of months for summer periods. The residence times for South Bay are fairly long (on the order of several months) during summer, and typically shorter (less than a month) during winter when density-driven exchanges occur.  相似文献   

18.
Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River). Mulloway (Argyrosomus japonicus, 47–89 cm total length) were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time) in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4) tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8). High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed.  相似文献   

19.
Early juvenile Japanese temperate bass Lateolabrax japonicus samples were collected during four cruises to study the spatial and temporal patterns of distribution and feeding habits of the fish in Chikugo estuary, Ariake Sea, Japan. Gut contents were studied by separating, identifying and counting the prey organisms. Plankton samples were collected during each cruise to study the numerical abundance of copepods in the water. Copepod dry biomass and gut content dry mass were estimated. Juveniles were distributed over wide estuarine areas in salinities ranging from as low as 0·37 to as high as 28·81. Considerable spatial and temporal variations were observed in the copepod distribution in the environment and in the food habits of the fish. Two distinctly different copepod assemblages were identified along the estuary: one in the upper river, dominated by a single species Sinocalanus sinensis, and the other a multi‐specific assemblage in the lower estuary dominated by common coastal copepods such as Acartia omorii, Oithona davisae, Paracalanus parvus and Calanus sinicus. The gut content composition corresponded strongly with the copepod composition in the environment, i.e. a single species (S. sinensis) dietary habit at the upper river and a multi‐specific dietary habit dominated by the common coastal copepods in the lower estuary. Ivlev's electivity index showed that the fish strongly preferred larger copepods and avoided smaller ones. Higher dry biomass of copepods in the water as well as higher dry masses of the gut contents were recorded in the low‐to‐medium saline upper river areas, indicating that these areas are of particular importance as nursery grounds for the juvenile Japanese temperate bass. It was speculated that ascending to the upstream nursery areas to utilize S. sinensis, which is the single dominant copepod in these areas, is one of the most important survival strategies of the Japanese temperate bass juveniles in the Chikugo estuary.  相似文献   

20.
River flow can impact which sources of particulate organic matter (POM) fuel estuarine food webs. Here, we used stable carbon (C) and nitrogen (N) isotope analyses to compare how contributions of different POM sources (terrestrial, estuarine, and marine) to the diets of zooplankton and juvenile fishes differed between low and high river flow conditions, as well as spatially across a tropical estuary, Hilo Bay, Hawaii, USA. Diets of zooplankton and juvenile fishes were affected by river flow conditions, but the magnitude and the change in the basal resources depended on the location of the station in the estuary relative to the ocean and the river mouths. Consumers from the station most isolated from the ocean and with groundwater and overland flow inputs, utilized a combination of estuarine and terrestrial POM during both low and high river flow conditions and exhibited less variability in their basal resources than stations with direct ocean exchange. Consumers from stations in the Bay most affected by ocean exchange and river inputs utilized a combination of estuarine, terrestrial, and marine POM during low flow conditions, but shifted to marine and terrestrial POM during high river flow conditions. This shift to using terrestrial POM during high river flow conditions was substantial and up to 40% higher than values measured in other estuaries. Factors suspected to be affecting which POM source(s) consumers use in Hilo Bay are gross primary production, biological availability of exported terrestrial OM, and estuarine bacteria biomass, all of which are affected by river flow. Overall, our results suggest that Hilo Bay's food web and possibly those from other tropical estuaries are vulnerable to changes in hydrology, which may be further enhanced by global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号