首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peach-potato aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) has developed resistance to pyrethroid insecticides as a result of a mechanism conferring reduced nervous system sensitivity, termed knockdown resistance (kdr). This reduced sensitivity is caused by two mutations, L1014F (kdr) and M918T (super-kdr), in the para-type voltage gated sodium channel. Kdr mutations in M. persicae are found in field populations world-wide. In order to investigate whether this situation is due to the mutations arising independently in different populations or by single mutation events that have spread by migration, regions flanking these mutations were sequenced from different geographical areas. The DNA sequences produced, which included a 1 kb intron, were found to be highly conserved. Several different haplotypes were identified containing kdr and super-kdr. Whilst these results could indicate either multiple independent origins of both mutations or recombination following a single origin, given the short timescale of resistance development, multiple independent origins of kdr and super-kdr are the most plausible interpretation.  相似文献   

2.
Recent advances in the characterisation of insect sodium channel gene sequences have identified a small number of point mutations within the channel protein that are implicated in conferring target-site resistance to pyrethroid insecticides (so-called knockdown resistance or kdr). The L1014F (leucine-to-phenylalanine) mutation located in the centre of segment 6 of the domain II region (IIS6) of the sodium channel (the so-called kdr trait) has been detected in the peach-potato aphid, Myzus persicae (Sulzer), and is considered to be the primary cause of pyrethroid resistance in this species. Here we report on the characterisation of a second mutation, M918T (methione-to-threonine), within the nearby IIS4-S5 intracellular linker (the so-called super-kdr trait) in a field clone also possessing L1014F, with both mutations present in heterozygous form. The resistance phenotype of M. persicae clones possessing various combinations of L1014F and M918T to a wide range of pyrethroids (both Type I and II) was assessed in leaf-dip bioassays and to lambda-cyhalothrin applied at up to ten times the recommended field rate as foliar sprays to aphids feeding on whole plants. Bioassay results demonstrated that presence of both mutations was associated with extreme resistance to all the pyrethroids tested relative to aphids lacking the mutations. Furthermore, this resistance well exceeded that shown by aphids that were homozygous for L1014F but lacking M918T. However, pre-treatment with piperonyl butoxide in the leaf-dip bioassays failed to suppress pyrethroid resistance in aphids carrying one or both of the mutations. The relevance of these findings for monitoring and managing pyrethroid resistance in M. persicae populations in the field is discussed.  相似文献   

3.
The super-kdr insecticide resistance trait of the house fly confers resistance to pyrethroids and DDT by reducing the sensitivity of the fly nervous system. The super-kdr genetic locus is tightly linked to the Vssc1 gene, which encodes a voltage-sensitive sodium channel alpha subunit that is the principal site of pyrethroid action. DNA sequence analysis of Vssc1 alleles from several independent super-kdr fly strains identified two amino acid substitutions associated with the super-kdr trait: replacement of leucine at position 1014 with phenylalanine (L1014F), which has been shown to cause the kdr resistance trait in this species, and replacement of methionine at position 918 with threonine (M918T). We examined the functional significance of these mutations by expressing house fly sodium channels containing them in Xenopus laevis oocytes and by characterizing the biophysical properties and pyrethroid sensitivities of the expressed channels using two-electrode voltage clamp. House fly sodium channels that were specifically modified by site-directed mutagenesis to contain the M918T/L1014F double mutation gave reduced levels of sodium current expression in oocytes but otherwise exhibited functional properties similar to those of wildtype channels and channels containing the L1014F substitution. However, M918T/L1014F channels were completely insensitive to high concentrations of the pyrethroids cismethrin and cypermethrin. House fly sodium channels specifically modified to contain the M918T single mutation, which is not known to exist in nature except in association with the L1014F mutation, gave very small sodium currents in oocytes. Assays of these currents in the presence of high concentrations of cismethrin suggest that this mutation alone is sufficient to abolish the pyrethroid sensitivity of house fly sodium channels. These results define the functional significance of the Vssc1 mutations associated with the super-kdr trait of the house fly and are consistent with the hypothesis that the super-kdr trait arose by selection of a second-site mutation (M918T) that confers to flies possessing it even greater resistance than the kdr allele containing the L1014F mutation.  相似文献   

4.
5.
The peach-potato aphid, Myzus persicae (sulzer), is an important arable pest species throughout the world. Extensive use of insecticides has led to the selection of resistance to most chemical classes including organochlorines, organophosphates, carbamates and pyrethroids. Resistance to pyrethroids is often the result of mutations in the para-type sodium channel protein (knockdown resistance or kdr). In M. persicae, knockdown resistance is associated with two amino-acid substitutions, L1014F (kdr) and M918T (super-kdr). In this study, the temporal and spatial distributions of these mutations, diagnosed using an allelic discriminating polymerase chain reaction assay, were investigated alongside other resistance mechanisms (modified acetylcholinesterase (MACE) and elevated carboxylesterases). Samples were collected from the UK, mainland Europe, Zimbabwe and south-eastern Australia. The kdr mutation and elevated carboxylesterases were widely distributed and recorded from nearly every country. MACE and super-kdr were widespread in Europe but absent from Australian samples. The detection of a strongly significant heterozygote excess for both kdr and super-kdr throughout implies strong selection against individuals homozygous for these resistance mutations. The pattern of distribution found in the UK seemed to indicate strong selection against the super-kdr (but not the kdr) mutation in any genotype, in the absence of insecticide pressure. There was a significant association (linkage disequilibrium) between different resistance mechanisms, which was probably promoted by a lack of recombination due to parthenogenesis.  相似文献   

6.
Two amino acid substitutions (L1014F and M918T) in the voltage-gated sodium channel confer target-site resistance to pyrethroid insecticides in the peach potato aphid, Myzus persicae. Pyrethroid-resistant and -susceptible M. persicae clones with various combinations of these mutations were crossed under laboratory conditions, and the genotypes of aphid progeny were analysed by direct DNA sequencing of the IIS4-S6 region of the sodium channel gene. Segregation patterns showed that in aphids heterozygous for both L1014F and M918T, both mutations were present in the same resistance allele. Despite these mutations appearing largely recessive in other pest species, such aphids exhibited strong resistance to pyrethroids in leaf-dip bioassays. These results have important implications for the spread and management of pyrethroid resistance in field populations.  相似文献   

7.
DDT inhibits Na channel inactivation and deactivation, promotes Na channel activation and reduces the resting potential of Xenopus oocytes expressing the Drosophila para Na channel. These changes are only marginally influenced by the single mutation M918T (super-kdr) but are reduced approximately 10-fold by either the single mutation L1014F (kdr) or the double mutation L1014F+M918T, both of which confer resistance to the pyrethroids permethrin and deltamethrin. We conclude that DDT binds either to or in the region of L1014 on IIS6 but only weakly to M918 on the IIS4-S5 linker, which is part of a high-affinity binding site for permethrin and deltamethrin.  相似文献   

8.
Knockdown resistance (kdr) to pyrethroid insecticides is caused by point mutations in the pyrethroid target site, the para-type sodium channel of nerve membranes. This most commonly involves alterations within the domain II (S4–S6) region of the channel protein where five different mutation sites have been identified across a range of insect species. To investigate the incidence of this mechanism in cat fleas, we have cloned and sequenced the IIS4–IIS6 region of the para sodium channel gene from seven laboratory flea strains. Analysis of these sequences revealed two amino acid replacements at residues previously implicated in pyrethroid resistance. One is the ‘common’ kdr mutation, a leucine to phenylalanine substitution (equivalent to L1014F of housefly) reported previously in several other insects. The other is a threonine to valine substitution (equivalent to T929V) and is a novel variant of the T929I mutation first identified in diamondback moth. The L1014F mutation was found at varying frequency in all of the laboratory flea strains, whereas the T929V mutation was found only in the highly resistant Cottontail strain. We have developed rapid PCR-based diagnostic assays for the detection of these mutations in individual cat fleas and used them to show that both L1014F and T929V are common in UK and US flea populations. This survey revealed a significant number of fleas that carry only the V929 allele indicating that co-expression with the F1014 allele is not necessary for flea viability.  相似文献   

9.
kdr and super-kdr are mutations in houseflies and other insects that confer 30- and 500-fold resistance to the pyrethroid deltamethrin. They correspond to single (L1014F) and double (L1014F+M918T) mutations in segment IIS6 and linker II(S4-S5) of Na channels. We expressed Drosophila para Na channels with and without these mutations and characterized their modification by deltamethrin. All wild-type channels can be modified by <10 nM deltamethrin, but high affinity binding requires channel opening: (a) modification is promoted more by trains of brief depolarizations than by a single long depolarization, (b) the voltage dependence of modification parallels that of channel opening, and (c) modification is promoted by toxin II from Anemonia sulcata, which slows inactivation. The mutations reduce channel opening by enhancing closed-state inactivation. In addition, these mutations reduce the affinity for open channels by 20- and 100-fold, respectively. Deltamethrin inhibits channel closing and the mutations reduce the time that channels remain open once drug has bound. The super-kdr mutations effectively reduce the number of deltamethrin binding sites per channel from two to one. Thus, the mutations reduce both the potency and efficacy of insecticide action.  相似文献   

10.
Populations of Plutella xylostella, extending over 3800 km in southern Australia, show no genetic structure as assessed by microsatellite markers; yet outbreaks of pyrethroid resistance occur sporadically in cropping areas. Since mutations in the para voltage-gated sodium channel gene have been implicated in pyrethroid resistance, we looked for DNA sequence variation at this target among Australian moths. We found two resistance mutations previously reported for this species (L1014F and T929I), as well as a novel substitution (F1020S). Of the eight possible haplotypes formed by combinations of these three biallelic polymorphisms, only four were found in Australian populations: the wild-type allele (w), the kdr mutation allele (kdr) with only L1014F, the super-kdr-like combination of L1014F and T929I (skdrl), and the crashdown allele with only F1020S (cdr). Comparison of genotype frequencies among survivors of permethrin assays with those from untreated controls identified three resistant genotypes: skdrl homozygotes, cdr homozygotes and the corresponding heterozygote, cdr/skrdl - the heterozygote being at least as resistant as either homozygote. Spatial heterogeneity of allele frequencies was conspicuous, both across the continent and among local collections, consistent with reported spatial heterogeneity of pyrethroid resistance. Further, high resistance samples were sometimes associated with high frequency of cdr, sometimes high frequency of skdrl, or sometimes with a high combined cdr+skdrl frequency. The skdrl and cdr alleles explain a high proportion of the Australia-wide resistance variation. These data add to evidence that nerve insensitivity by mutations in the para-sodium channel gene is a common pyrethroid resistance mechanism in P. xylostella.  相似文献   

11.
How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs.  相似文献   

12.
The frequency of the L1014 F kdr mutation was determined in 14 field populations of house flies, Musca domestica L., with resistance factors at LD50 for pyrethrin/piperonyl butoxide and bioresmethrin/piperonyl butoxide from 4 to 29 and 2 to 98, respectively. A polymerase chain reaction test for identifying kdr homo- or heterozygote house flies was used to determine the frequency of kdr. The L1014 F allele was found in all populations tested. The frequency of kdr in the field populations was high and varied from 0.46 to 0.99. Eleven of the populations were in Hardy-Weinberg equilibrium, whereas two strains had higher number of heterozygotes than expected, indicating a possible heterozygote advantage. The frequency of kdr was strongly correlated with the reduced mortality observed in the bioassays with pyrethrum and bioresmethrin synergized by piperonyl butoxide. This indicates that kdr is a major mechanism for pyrethroid resistance in these field populations. Five field populations had resistance factors >25 and >10 for bioresmethrin/piperonyl butoxide and pyrethrin/piperonyl butoxide, respectively. The frequencies of kdr in these five populations varied from 0.89 to 0.99. The frequencies of kdr in the field populations showing no or a low level of resistance had frequencies of kdr from 0.46 to 0.75, which indicates that the L1014 F kdr allele is a fully recessive genetic trait in house flies. We have shown that the molecular diagnostic PASA method to determine the resistance phenotypes and the frequency of kdr is a powerful tool, which could be used to get information to make recommendations about pest and resistance management.  相似文献   

13.
14.
IntroductionThe aim of this study was to evaluate the susceptibility to insecticides of An. gambiae mosquitoes sampled in Dielmo (Senegal), in 2010, 2 years after the implementation of Long Lasting Insecticide-treated Nets (LLINs) and to report the evolution of kdr mutation frequency from 2006 to 2010.MethodsWHO bioassay susceptibility tests to 6 insecticides were performed on adults F0, issuing from immature stages of An. gambiae s.l., sampled in August 2010. Species and molecular forms as well as the presence of L1014F and L1014S kdr mutations were assessed by PCR. Longitudinal study of kdr mutations was performed on adult mosquitoes sampled monthly by night landing catches from 2006 to 2010.FindingsNo specimen studied presented the L1014S mutation. During the longitudinal study, L1014F allelic frequency rose from 2.4% in year before the implementation of LLINs to 4.6% 0–12 months after and 18.7% 13–30 months after. In 2010, An. gambiae were resistant to DDT, Lambda-cyhalothrin, Deltamethrin and Permethrin (mortality rates ranging from 46 to 63%) but highly susceptible to Fenitrothion and Bendiocarb (100% mortality). There was significantly more RR genotype among An. gambiae surviving exposure to DDT or Pyrethroids. An. arabiensis represented 3.7% of the sampled mosquitoes (11/300) with no kdr resistance allele detected. An. gambiae molecular form M represented 29.7% of the mosquitoes with, among them, kdr genotypes SR (18%) and SS (82%). An. gambiae molecular form S represented 66% of the population with, among them, kdr genotype SS (33.3%), SR (55.6%) and RR (11.1%). Only 2 MS hybrid mosquitoes were sampled and presented SS kdr genotype.ConclusionBiological evidence of resistance to DDT and pyrethroids was detected among An. gambiae mosquitoes in Dielmo (Senegal) within 24 months of community use of LLINs. Molecular identification of L1014F mutation indicated that target site resistance increased after the implementation of LLINs.  相似文献   

15.
Pyrethroid insecticide resistance due to reduced nerve sensitivity, known as knockdown resistance (kdr or kdr-type), is linked to multiple point mutations in the para-homologous sodium channel genes. Previously we demonstrated that two mutations (E434K and C764R) in the German cockroach sodium channel greatly enhanced the ability of the L993F mutation (a known kdr -type mutation) to reduce sodium channel sensitivity to deltamethrin, a pyrethroid insecticide. Neither E434K nor C764R alone, however, altered sodium channel sensitivity. To examine whether E434K and C764R also enhance the effect of pyrethroid resistance-associated sodium channel mutations identified in other insects, we introduced a V to M mutation (V409M) into the cockroach sodium channel protein at the position that corresponds to the V421M mutation in the Heliothis virescens sodium channel protein. We found that the V409M mutation alone modified the gating properties of the sodium channel and reduced channel sensitivity to deltamethrin by 10-fold. Combining the V409M mutation with either the E434K or C764K alone did not reduce the V409M channel sensitivity to deltamethrin further. However, the triple mutation combination (V409M, E434K and C764R) dramatically reduced channel sensitivity by 100-fold compared with the wild-type channel. These results suggest that the E434K and C764R mutations are important modifiers of sodium channel sensitivity to pyrethroid insecticides.  相似文献   

16.
Sequence variation at the intron-1 of the voltage-gated sodium channel gene in Anopheles gambiae M- and S-forms from Cameroon was assessed to explore the number of mutational events originating knockdown resistance ( kdr ) alleles. Mosquitoes were sampled between December 2005 and June 2006 from three geographical areas: (i) Magba in the western region; (ii) Loum, Tiko, Douala, Kribi, and Campo along the Atlantic coast; and (iii) Bertoua, in the eastern continental plateau. Both 1014S and 1014F kdr alleles were found in the S-form with overall frequencies of 14% and 42% respectively. Only the 1014F allele was found in the M-form at lower frequency (11%). Analysis of a 455 bp region of intron-1 upstream the kdr locus revealed four independent mutation events originating kdr alleles, here named MS1 -1014F, S1-1014S and S2-1014S kdr- intron-1 haplotypes in S-form and MS3-1014F kdr- intron-1 haplotype in the M-form. Furthermore, there was evidence for mutual introgression of kdr 1014F allele between the two molecular forms, MS1 and MS3 being widely shared by them. Although no M/S hybrid was observed in analysed samples, this wide distribution of haplotypes MS1 and MS3 suggests inter-form hybridizing at significant level and emphasizes the rapid diffusion of the kdr alleles in Africa. The mosaic of genetic events found in Cameroon is representative of the situation in the West–Central African region and highlights the importance of evaluating the spatial and temporal evolution of kdr alleles for a better management of insecticide resistance.  相似文献   

17.
Culex pipiens complex mosquitoes are widely distributed throughout China and are known to be important disease vectors. Two pyrethroid resistance associated mutations have been identified in Cx. pipiens complex (Diptera: Culicidae), but there is little information on the diversity and distribution of kdr alleles in pyrethroid resistance in Cx. pipiens complex mosquitoes in China. In the present study, we report on a modified three tube allele-specific (AS)-PCR method for detecting the 1014F and 1014S alleles. The new technique was applied to identify the distribution of the two alleles in natural Cx. pipiens complex populations in China. The results confirmed that the new method is both sensitive and specific. The 1014F allele was found in all 14 of the field populations tested (frequency ranged from 6.8 to 76.2%) and the 1014S allele was found in almost two-thirds (frequency from 2.4 to 28.6%), indicating that the genotypes known to be associated with pyrethroid resistance are widespread in China. The resistance-associated alleles were more common in southern Chinese sampling sites than in northern sites. The coexistence of the two resistant mutations in individual mosquitoes was also observed in five of the field populations. Two alternative mutations within the L1014 codon were identified in Culex pipiens molestus Forskal, 1775, including a non-synonymous mutation resulting in a 1014C substitution.  相似文献   

18.
Tan WL  Wang ZM  Li CX  Chu HL  Xu Y  Dong YD  Wang ZC  Chen DY  Liu H  Liu DP  Liu N  Sun J  Zhao T 《PloS one》2012,7(1):e29242
The increasing prevalence of insecticide resistance in Anopheles sinensis, a major vector of malaria in Jiangsu province in eastern China, threatens to compromise the successful use of insecticides in malaria control strategies. It is therefore vital to understand the insecticide resistance status of An. sinensis in the region. This study examined the nucleotide diversity of the para-sodium channel and knockdown resistance (kdr) in five field populations of adult An. sinensis mosquitoes collected in Jiangsu province, identifying the L1014F and L1014C substitutions for the first time. Competitive polymerase chain reaction (PCR) amplification of specific allele (cPASA) and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) for resistance diagnosis were developed and validated. Comparing the results with direct sequencing revealed that the PCR-RFLP method was more sensitive and specific whereas the cPASA method was more convenient and suitable. The significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014C substitutions in the kdr gene provides a useful molecular marker for monitoring beta-cypermethrin resistance in natural populations of An. sinensis. Our results point to the L1014F substitution as the key mutation associated with beta-cypermethrin resistance. The high resistance and mutation frequency detected in the five populations also suggest cross-resistance with other pyrethroids may occur in An. sinensis, highlighting the need for further surveys to map insecticide resistance in China and the adoption of a rational management of insecticide application for resistance management and mosquito vector control.  相似文献   

19.
IntroductionLymphatic filariasis causes long term morbidity and hampers the socio-economic status. Apart from the available treatments and medication, control of vector population Culex quinquefasciatus Say through the use of chemical insecticides is a widely applied strategy. However, the unrestrained application of these insecticides over many decades has led to resistance development in the vectors.MethodsIn order to determine the insecticide susceptibility/resistance status of Cx. quinquefasciatus from two filariasis endemic districts of West Bengal, India, wild mosquito populations were collected and assayed against six different insecticides and presence of L1014F; L1014S kdr mutations in the voltage-gated sodium channel gene was also screened along with the use of synergists to evaluate the role of major detoxifying enzymes in resistance development.ResultsThe collected mosquito populations showed severe resistance to insecticides and the two synergists used–PBO (piperonyl butoxide) and TPP (triphenyl phosphate), were unable to restore the susceptibility status of the vector thereupon pointing towards a minor role of metabolic enzymes. kdr mutations were present in the studied populations in varying percent with higher L1014F frequency indicating its association with the observed resistance to pyrethroids and DDT. This study reports L1014S mutation in Cx. quinquefasciatus for the first time.  相似文献   

20.
ABSTRACT: Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. RESULTS: At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014 F kdr mutation increased throughout the three years and by 2010, the frequency of 1014 F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014 S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003) and in 2010 the 1014 S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12%) were observed in Soumousso in 2009 and the difference between sites is significant for each year. CONCLUSION: Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and between rounds of testing, and hence it is important that resistance monitoring is carried out on more than one occasion before decisions on insecticide procurement for vector control are made. The presence of 1014 S in An. gambiae s.l., in addition to 1014 F, is not unexpected given the recent report of 1014 S in Benin but highlights the importance of monitoring for both mutations throughout the continent. Future research must now focus on the impact that this resistance is having on malaria control in Burkina Faso.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号