共查询到20条相似文献,搜索用时 11 毫秒
1.
Previously, we observed that alloxan-induced in vitro cytotoxicity and apoptosis in an insulin secreting rat insulinoma, RIN, cells was prevented by prior exposure to prostaglandin (PG) E(1), PGE(2), PGI(2), PGF(1)(alpha), and PGF(3)(alpha) (P<0.05 compared to alloxan), whereas thromboxane B(2) (TXB(2)) and 6-keto-PGF(1)(alpha) were ineffective. In an extension of these studies, we now report that prior intraperitoneal administration of PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) prevented alloxan-induced diabetes mellitus in male Wistar rats, whereas PGI(2), TXB(2), and 6-keto PGF(1)(alpha) were not that effective. PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) not only attenuated chemical-induced diabetes mellitus but also restored the antioxidant status to normal range in red blood cells and pancreas. These results suggest that PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) can abrogate chemically induced diabetes mellitus in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus. 相似文献
2.
3.
Saturated fatty acids have been considered major contributing factors in type 2 diabetes, whereas unsaturated fatty acids have beneficial effects for preventing the development of diabetes. However, the effects of polyunsaturated fatty acids in pancreatic β cells have not been reported. Here, we examined the effects of arachidonic acid (AA) on palmitic acid (PA)-mediated lipotoxicity in clonal HIT-T15 pancreatic β cells. AA prevented the PA-induced lipotoxicity as indicated by cell viability, DNA fragmentation and mitochondrial membrane potential, whereas eicosatetraynoic acid (ETYA), a non-metabolizable AA, had little effect on PA-induced lipotoxicity. In parallel with its protective effects against PA-induced lipotoxicity, AA restored impaired insulin expression and secretion induced by PA. AA but not ETYA increased intracellular triglyceride (TG) in the presence of PA compared with PA alone, and xanthohumol, a diacylglycerol acyltransferase (DGAT) inhibitor, reversed AA-induced protection from PA. Taken together, our results suggest that AA protects against PA-induced lipotoxicity in clonal HIT-T15 pancreatic β cells, and the protective effects may be associated with TG accumulation, possibly through sequestration of lipotoxic PA into TG. 相似文献
4.
Loubna Ait Dra Souad Sellami Hanane Rais Faissal Aziz Abdallah Aghraz Khalid Bekkouche Mohamed Markouk Mustapha Larhsini 《Saudi Journal of Biological Sciences》2019,26(6):1171-1178
Medicinal plants play an important role in the management of diabetes mellitus especially in developing countries where resources are lacking. Herbal of natural origin, unlike the synthetic compounds, are more effective, safer and have less side effects. For continuing research on biological properties of Moroccan medicinal plants, the present work was undertaken to evaluate the potential and mechanism of the antidiabetic activity of the Caralluma europaea methanolic extract in alloxan-induced diabetic mice. A high-performance liquid chromatography technique (HPLC) was used to identify and quantify the major phenolic compounds in the methanolic extract. The in vitro antioxidant property was evaluated using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging method, reducing power and ß-carotene-linoleic acid assays. The acute toxicity of the extract was evaluated by giving it orally to mice at single doses of 200, 500, 1000, 2000 mg/kg body weight. The antidiabetic effect was conducted on Swiss albino mice. Diabetes was induced with single intraperitonial injection of alloxan monohydrate (200 mg/kg body weight) and animals were treated with methanol extract at a dose of 250 mg/kg and 500 mg/kg body weight. The blood glucose levels were measured and histopathological analysis of pancreas was performed to evaluate alloxan-induced tissue injuries. The main phenols identified and quantified in the extract were ferulic acid, quercetine, 3,4 dihydroxybenzoic acid, rutin, epigallocatechin, and catechin. Ferulic acid was found to be the main phenolic compound ant its proportion was up to 52% of total phenolic compounds, followed by quercetin (36%). The result showed that methanol extract exhibited an antioxidant effect. Acute toxicity studies revealed that C. europaea extract was safe up 2000 mg/kg body weight and approximate LD50 is more than 2000 mg/kg. Moreover, the methanol extract prevented the diabetogenic effect of alloxan and decreased significantly the blood glucose level (P < 0.001) in treated mice. Morphometric study of pancreas revealed that C. europaea extract protected significantly the islets of Langerhans against alloxan-induced tissue alterations. 相似文献
5.
Lukivskaya O Lis R Egorov A Naruta E Tauschel HD Buko VU 《Cell biochemistry and function》2004,22(2):97-103
The purpose of this work was to study the effect of ursodeoxycholic acid (UDCA) on the morphological and functional alterations in pancreatic islet beta-cells in rats with diabetes induced by alloxan (150 mg kg(-1), i.p.). UDCA (40 mg kg(-1), i.g.) was administered daily from the fifth to the 35th day after the alloxan treatment. The treatment of diabetic rats with UDCA improved the pancreatic morphology disturbed by the alloxan treatment: UDCA increased the number of pancreatic islets and beta-cells, the beta-/alpha-cell ratio and decreased the number of alpha-cells. As the morphometric data suggest, the treatment of diabetic animals with UDCA significantly increased the area of beta-cell cytoplasmatic granules stained by paraldehyde-fuchsin. The concentration of blood glucose in diabetic rats was gradually decreased after the UDCA treatment, and at the end of the experiment reached the control value. The treatment with UDCA raised the serum insulin level in diabetic rats about 2.5-fold, but this concentration was significantly lower as compared to the control group. The content of lipid peroxidation end-products, hydroxyalkenals and malondialdehyde, was significantly elevated in the alloxan-treated rats, whereas the treatment with UDCA normalized these parameters. The present data indicate that UDCA acts as an effective antidiabetic agent in alloxan-induced diabetes and its beneficial effects in diabetic rats can be related to the antioxidant properties of UDCA. 相似文献
6.
7.
Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development 总被引:2,自引:0,他引:2
M P Diamond K H Moley A Pellicer W K Vaughn A H DeCherney 《Journal of reproduction and fertility》1989,86(1):1-10
Mice were made diabetic by intraperitoneal injection of streptozotocin or alloxan. Germinal vesicle breakdown in the ovarian follicles at 8 h after hCG in control animals (57%) was significantly greater than in streptozotocin-(24%) and alloxan-(42%) diabetic animals (P less than 0.001). This delay in oocyte maturation was reversible by in-vivo insulin administration to diabetic mice. A developmental delay was also found for embryos recovered from diabetic mice. This developmental delay extended into the 72 h in-vitro cultures. Compared to control embryos, those from alloxan- and streptozotocin-treated mice demonstrated marked impairment in development as assessed by (1) distribution of developmental cell stages at each observation period and (2) rates of development which increasingly diverged at each observation period. In diabetic mice treated with insulin in vivo, the percentage of 2-cell embryos recovered increased. Furthermore, in streptozotocin- and alloxan-animals treated with insulin, the rate of in-vitro development of embryos, as well as their developmental stage distribution improved. We therefore suggest that uncontrolled diabetes mellitus, as well as contributing to the development of congenital malformations, may deleteriously affect reproductive performance both before fertilization and at the very earliest gestational stages. 相似文献
8.
M A Alnaqeeb M Ali M Thomson S H Khater S A Gomes J M al-Hassan 《Prostaglandins, leukotrienes, and essential fatty acids》1992,46(4):301-306
Soluble rat tail tendon collagen produced respiratory distress, agitation, convulsions and finally death in rabbits when infused intravenously (i.v.) in lethal doses. Similar observations were noted when a lethal dose of arachidonic acid (unsaturated essential fatty acid) was infused. These agents caused thrombocytopenia, indicative of in vivo platelet aggregation, hypotension and increased levels of thromboxane (TX) B2 (a stable metabolite of TXA2) in the plasma. Histopathological examination of lung, heart and liver tissue indicated that the lungs and livers of treated animals were adversely affected, while heart tissues appeared to be normal. Histopathological examination of lung and liver tissues of animals pretreated with garlic, then treated with a lethal dose of collagen or arachidonic acid showed a significant reduction in the damage observed compared to animals not pretreated with garlic. 相似文献
9.
Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus 总被引:1,自引:0,他引:1
Li Y Hamasaki T Nakamichi N Kashiwagi T Komatsu T Ye J Teruya K Abe M Yan H Kinjo T Kabayama S Kawamura M Shirahata S 《Cytotechnology》2011,63(2):119-131
Electrolyzed reduced water, which is capable of scavenging reactive oxygen species, is attracting recent attention because it has shown improved efficacy against several types of diseases including diabetes mellitus. Alloxan produces reactive oxygen species and causes type 1 diabetes mellitus in experimental animals by irreversible oxidative damage to insulin-producing β-cells. Here, we showed that electrolyzed reduced water prevented alloxan-induced DNA fragmentation and the production of cells in sub-G1 phase in HIT-T15 pancreatic β-cells. Blood glucose levels in alloxan-induced type 1 diabetes model mice were also significantly suppressed by feeding the mice with electrolyzed reduced water. These results suggest that electrolyzed reduced water can prevent apoptosis of pancreatic β-cells and the development of symptoms in type 1 diabetes model mice by alleviating the alloxan-derived generation of reactive oxygen species. 相似文献
10.
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg− 1 b.w., i.p.). UDCA (40 mg kg− 1 b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate + malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate + malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound. 相似文献
11.
12.
Connell E Darios F Broersen K Gatsby N Peak-Chew SY Rickman C Davletov B 《EMBO reports》2007,8(4):414-419
Syntaxin and Munc18 are, in tandem, essential for exocytosis in all eukaryotes. Recently, it was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by arachidonic acid, indicating that this common second messenger acts to disrupt the syntaxin-Munc18 interaction. Here, we show that arachidonic acid can stimulate syntaxin 1 alone, indicating that it is syntaxin 1 that undergoes a structural change in the syntaxin 1-Munc18 complex. Arachidonic acid is incapable of dissociating Munc18 from syntaxin 1 and, crucially, Munc18 remains associated with syntaxin 1 after arachidonic-acid-induced syntaxin 1 binding to synaptosomal-associated protein 25 kDa (SNAP25). We also show that the same principle operates in the case of the ubiquitous syntaxin 3 isoform, highlighting the conserved nature of the mechanism of arachidonic acid action. Neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) can be isolated from brain membranes in a complex with endogenous Munc18, consistent with a proposed function of Munc18 in vesicle docking and fusion. 相似文献
13.
J Sadique V H Begum V Thenmozhi V Elango 《Biochemical medicine and metabolic biology》1987,38(1):104-110
The aqueous extract of cotton seed is able to reduce blood sugar in alloxan-induced diabetes mellitus in rats. A dose of 1000 mg/kg was found to be an effective dose. Cotton seed extract was able to enhance the liver glycogen, like glibenclamid, and was also able to reduce blood cholesterol which was found raised in the diabetic state. Further it was able to normalize the altered level in the liver lipid peroxide content. The role of cotton seed aqueous extract is suggested in the lipid metabolism which is altered during diabetes mellitus. 相似文献
14.
Li Y Hamasaki T Teruya K Nakamichi N Gadek Z Kashiwagi T Yan H Kinjo T Komatsu T Ishii Y Shirahata S 《Cytotechnology》2012,64(3):281-297
Insulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells. Hita Tenryosui Water® (Hita T. W., Hita, Japan) and Nordenau water (Nord. W., Nordenau, Germany), referred to as natural reduced waters (NRWs), scavenge ROS in cultured cells, and therefore, might be a possibility as an alternative to conventional pharmacological agents against DM. Therefore, this study aimed to investigate the role of NRWs in alloxan (ALX)-induced β-cell apoptosis as well as in ALX-induced diabetic mice. NRWs equally suppressed DNA fragmentation levels. Hita T. W. and Nord. W. ameliorated ALX-induced sub-G1 phase production from approximately 40% of control levels to 8.5 and 11.8%, respectively. NRWs restored serum insulin levels (p < 0.01) and reduced blood glucose levels (p < 0.01) in ALX-induced mice. Hita T. W. restored tissue superoxide dismutase (SOD) (p < 0.05) activity but not tissue catalase activity. Hita T. W. did not elevate SOD or catalase activity in HIT-T15 cells. Nord. W. restored SOD (p < 0.05) and catalase (p < 0.05) activity in both cultured cells and pancreatic tissue to normal levels. Even though variable efficacies were observed between Hita T. W. and Nord. W., both waters suppressed ALX-induced DM development in CD-1 male mice by administering NRWs for 8 weeks. Our results suggest that Hita T. W. and Nord. W. protect against ALX-induced β-cell apoptosis, and prevent the development of ALX-induced DM in experimental animals by regulating ALX-derived ROS generation and elevating anti-oxidative enzymes. Therefore, the two NRWs tested here are promising candidates for the prevention of DM development. 相似文献
15.
L Pari G Saravanan 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2002,131(1):19-25
Cogent db, a compound herbal drug, was investigated for its possible antidiabetic effect in alloxan-induced diabetic rats. Oral administration of 0.15, 0.30 and 0.45 g/kg body wt. of the aqueous solution of Cogent db for 40 days exhibited a significant reduction in blood glucose, glycosylated haemoglobin and increased plasma insulin, total haemoglobin along with antihyperlipidemic effects in diabetic rats. The effective dose was found to be 0.45 g/kg body wt. It also prevents body weight loss in diabetic rats. An oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats in which there was a significant improvement in glucose tolerance in rats treated with Cogent db. A comparison was made between the action of Cogent db and a known antidiabetic drug — glibenclamide (600 μg/kg body wt.). The antidiabetic effect of Cogent db was more effective than that observed with glibenclamide. 相似文献
16.
Effect of prostaglandins against alloxan-induced cytotoxicity to insulin secreting insulinoma RIN cells in vitro 总被引:2,自引:0,他引:2
In the present study, we studied the effect of various prostaglandins (PGs) on alloxan-induced cytotoxicity to rat insulinoma (RIN) cells. Of all the PGs tested, PGE(1), PGE(2), PGI(2), PGF(1 alpha), and PGF(3 alpha) protected RIN cells from alloxan-induced cytotoxicity (P<0.05 compared to alloxan), whereas thromboxane B(2) and 6-keto-PGF(1 alpha) were not effective. PGE(1) induces a statistically significant increase in the activities of superoxide dismutase and glutathione peroxidase and decrease in lipid peroxides in alloxan-treated RIN cells (P<0.001). PGE(1) restored nitric oxide/lipid peroxide ratio to normalcy, suggesting that PGE(1) suppresses oxidant stress induced by alloxan in RIN cells in vitro. Furthermore, PGE(1) prevented DNA damage and apoptosis induced by alloxan. These results indicate that PGE(1) prevents alloxan-induced cytotoxicity to RIN cells in vitro. 相似文献
17.
18.
Earlier, we reported that oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevented the development of alloxan-induced diabetes mellitus in experimental animals. Here we report the results of our studies with pure saturated stearic acid (SA), monounsaturated oleic acid (OA) and omega-6 arachidonic acid (AA) on alloxan-induced diabetes mellitus in Wistar male rats. Prior oral supplementation with AA prevented alloxan-induced diabetes mellitus, whereas both SA and OA were ineffective. Cyclo-oxygenase (COX) and lipoxygenase (LO) inhibitors did not block this protective action of AA against alloxan-induced diabetes, suggesting that both prostaglandins and leukotrienes are not involved, and that AA by itself is effective. Furthermore, AA restored the anti-oxidant status to normal range in various tissues. These results suggest that AA protects pancreatic beta cells against alloxan-induced diabetes in experimental animals by attenuating oxidant stress. 相似文献
19.
20.
I T Mak A M Komarov J H Kramer W B Weglicki 《Cellular and molecular biology, including cyto-enzymology》2000,46(8):1337-1344
The potential anti-radical properties and cytoprotective effects of Mg-gluconate were studied. When microsomal membranes were peroxidized by a *O2- driven, Fe-catalyzed oxy-radical system (R* = dihydroxyfumarate + Fe2+), Mg-gluconate inhibited lipid peroxidation (TBARS formation) in a concentration-dependent manner with IC50 being 2.3 mM. For the entire range of .25-2 mM, MgSO4 or MgCl2 were < or = 20% effective compared to Mg-gluconate. When cultured bovine aortic endothelial cells were incubated with the R* for 50 min. at 37 degrees C, 56% loss of total glutathione occurred. Pre-treatment (10 min.) of the cells with 0.25-4 mM Mg-gluconate before R* exposure significantly (p<0.05) prevented the GSH loss to varying degrees; the EC50 was 1.1 mM. In separate experiments, with 30 min. of free radical incubation of endothelial monolayers (approximately 65% confluent), cell survival/proliferation determined by the tetrazolium salt MTT assay, decreased to 38% of control at 24 hrs; Mg-gluconate concentration-dependently attenuated the lost cell survival with EC50 of approximately 1.3 mM. For comparison, the effects provided by MgSO4 or MgCl2 were significantly lower and were < or = 1/3 as potent as that produced by Mg-gluconate. In a Fenton-reaction system consisting of Fe(II)+ H2O2, Mg-gluconate but not other Mg-salts, significantly inhibited the formation of OH radicals as determined by the ESR DMPO-OH signal intensity. Mg-gluconate also dose-dependently inhibited the 'Fe-catalyzed' deoxyribose degradation suggesting that Mg-gluconate could displace Fe from 'catalytic sites' of oxidative damage. These data suggest that Mg-gluconate may serve as a more advantageous Mg-salt for clinical use due to its additional anti-radical and cytoprotective activities. 相似文献