首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An abundant, highly conserved tonoplast protein in seeds   总被引:17,自引:6,他引:17       下载免费PDF全文
We have isolated the membranes of the protein storage vacuoles (protein bodies) from Phaseolus vulgaris cotyledons and purified an integral membrane protein with Mr 25,000 (TP 25). Antiserum to TP 25 recognizes an abundant polypeptide in the total cell extracts of many different seeds (monocots, dicots, and a gymnosperm), and specifically labels the vacuolar membranes of thin-sectioned soybean embryonic axes and cotyledons. TP 25 was not found in the starchy endosperm of barley and wheat or the seed coats of bean but was present in all seed parts examined that consist of living cells at seed maturity. The abundance of TP 25 was not correlated with the amount of storage protein in seed tissue, and the protein was not found in leaves that accumulate leaf storage protein. On the basis of its abundance, evolutionary conservation, and distribution in the plant, we propose that TP 25 may play a role in maintaining the integrity of the tonoplast during the dehydration/rehydration sequence of seeds.  相似文献   

2.
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein.  相似文献   

3.
4.
5.
6.
7.
8.
We have isolated a cDNA that encodes a novel serine protease, prosemin, from human brain. The cDNA of human prosemin is 1306 bp, encoding 317 amino acids. It showed significant homology with the sequence of a chromosome 16 cosmid clone (accession no. NT_037887.4). The prosemin gene contains six exons and five introns. The amino acid sequence of prosemin shows significant homology to prostasin, gamma-tryptase, and testisin (43%, 41%, and 38% identity, respectively), the genes of which are also located on chromosome 16. Northern hybridization showed that prosemin is expressed predominantly in the pancreas and weakly in the prostate and cerebellum. However, western blot and RT-PCR analyses showed that prosemin is expressed and secreted from various kinds of cancer cells, such as glioma, pancreas, prostate, and ovarian cell lines. Prosemin is secreted in the cystic fluid of clinical ovarian cancers. Furthermore, immunohistochemistry showed prosemin protein localized in the apical parts of ovarian carcinomas. Recombinant prosemin was expressed in COS cells and was purified by immunoaffinity chromatography. Recombinant prosemin preferentially cleaved benzyloxycarbonyl (Z)-His-Glu-Lys-methylcoumaryl amidide (MCA) and t-butyloxycarbonyl (Boc)-Gln-Ala-Arg-MCA. Our results suggest that prosemin is a novel serine protease of the chromosome 16 cluster that is highly expressed in the pancreas. The usefulness of this serine protease as a candidate tumor marker should be further examined.  相似文献   

9.
Summary In small leaf explants fromNautilocalyx lynchii (Hook. f.) Sprague (Gesneriaceae) the vacuolated epidermal cells divide after 3–4 days. Most cells divide periclinally, but longitudinal and transverse divisions are also found. Before mitosis the cells form a phragmosome (PS), a cytoplasmic structure which contacts the cell cortex at the future division site. An experimental approach was used to find out at which time the plane of cell division becomes fixed: prior to or during the formation of a PS.When 3 day-old explants were divided into two parts by a longitudinal cut, a high percentage of the cells near the wound divided longitudinally. Cells which already had a PS at the time of wounding most often divided in the plane of the PS. Some of the cells with a non-longitudinal PS, however, formed a longitudinal cell wall after the replacement of the original PS by a longitudinal PS.The observations show that most cells which had not yet formed a PS could be induced to form a cell wall in a new direction. As soon as the formation of the PS had started, however, it became more difficult to induce a change in the plane of cell division. These results suggest that the division site is chosen during the formation of the PS.Abbreviations BMT band of microtubules - DIC differential interference contrast microscopy - l longitudinal - l-o longitudinal-oblique - MT microtubule - p periclinal - PM prometaphase - PPB preprophase band - PS phragmosome - t transverse - t-o transverse-oblique  相似文献   

10.
11.
12.
The consistent observation across all kingdoms of life that highly abundant proteins evolve slowly demonstrates that cellular abundance is a key determinant of protein evolutionary rate. However, other empirical findings, such as the broad distribution of evolutionary rates, suggest that additional variables determine the rate of protein evolution. Here, we report that under the global selection against the cytotoxic effects of misfolded proteins, folding stability (ΔG), simultaneous with abundance, is a causal variable of evolutionary rate. Using both theoretical analysis and multiscale simulations, we demonstrate that the anticorrelation between the premutation ΔG and the arising mutational effect (ΔΔG), purely biophysical in origin, is a necessary requirement for abundance-evolutionary rate covariation. Additionally, we predict and demonstrate in bacteria that the strength of abundance-evolutionary rate correlation depends on the divergence time separating reference genomes. Altogether, these results highlight the intrinsic role of protein biophysics in the emerging universal patterns of molecular evolution.  相似文献   

13.
14.
15.
In addition to the assembled coding regions of immunoglobulin and T-cell receptor (TCR) genes, the V(D)J recombination reaction can in principle generate three types of by-products in normal developing lymphocytes: broken DNA molecules that terminate in a recombination signal sequence or a coding region (termed signal or coding end molecules, respectively) and DNA molecules containing fused recombination signal sequences (termed reciprocal products). Using a quantitative Southern blot analysis of the murine TCR alpha locus, we demonstrate that substantial amounts of signal end molecules and reciprocal products, but not coding end molecules, exist in thymocytes, while peripheral T cells contain substantial amounts of reciprocal products. At the 5' end of the J alpha locus, 20% of thymus DNA exists as signal end molecules. An additional 30 to 40% of the TCR alpha/delta locus exists as remarkably stable reciprocal products throughout T-cell development, with the consequence that the TCR C delta region is substantially retained in alpha beta committed T cells. The disappearance of the broken DNA molecules occurs in the same developmental transition as termination of expression of the recombination activating genes, RAG-1 and RAG-2. These findings raise important questions concerning the mechanism of V(D)J recombination and the maintenance of genome integrity during lymphoid development.  相似文献   

16.
In this report we describe the biochemical characterization of neutrophil and monocyte p8 and p14. Together the two proteins comprise approximately 45% of cytosolic protein in neutrophils and approximately 40-fold less in monocytes. They fractionated together in several chromatographic procedures and were found to exist as a noncovalently associated complex with a stoichiometry of 1:1, named p8,14. Cross-linking experiments showed p8,14 to form heterodimers under conditions simulating the cytosol. An apparent molecular mass of 35,000 daltons was obtained for the p8,14 complex in molecular sizing experiments which suggests the presence of modifications or distinctive structural features. Two major forms of p14 can be identified by two-dimensional gel electrophoresis, both of which form heterodimers with p8. The lower molecular weight variant of p14 lacks Cys-3 (Met-Thr-Cys-Lys-Met...) suggesting that differing translational start sites account for these two forms of p14. A protocol has been devised for the rapid purification of milligram quantities of p8 and p14 from neutrophil cytosol using fast-protein liquid chromatography.  相似文献   

17.
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal‐to‐zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc‐miR‐205 and bovine bta‐miR‐10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc‐miR‐205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte‐to‐embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.  相似文献   

18.
Highly vacuolated suspensor cells of spruce somatic embryos were examined by immunofluorescence light microscopy using butyl-methyl-methacrylate (BMM) and polyethylene glycol (PEG) embedded sections, transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The use of PEG embedded embryos provided a rapid method for light microscope detection of antigens before committing to FESEM analysis. BMM embedded specimens provided well preserved suspensor cells for immunofluorescence. FESEM permitted high resolution observation of large areas of the inner surface of the plasma membrane and associated cell organelles. Suspensor cells contained mostly transversely oriented cortical microtubules linked to the plasma membrane and adjacent microtubules by cross- bridges. Light and electron microscopy revealed numerous clathrin coated structures on the plasma membrane. These included flat patches of clathrin, coated pits and coated vesicles. Many coated vesicles were associated with microtubules. Both tubular and lamellar endoplasmic reticulum were observed on the plasma membrane by FESEM.  相似文献   

19.
An Arabidopsis thaliana cDNA encoding a new RNA-binding protein (RBP37) was cloned from a silique cDNA library. The predicted amino acid sequence corresponds to a RBP containing two RNA recognition motifs (RRM) and a basic domain. An affinity for nucleic acids was confirmed in binding assays using in vitro synthesised AtRBP37 protein. In situ hybridisation experiments on sections of flowers and siliques showed expression only in growing organs: gynoecium, petals, filaments and during early-embryogenesis expression is located in the embryo proper and the suspensor up to late heart stage. Expression is not detected in the embryo during maturation.This results suggests an expression pattern correlated with dividing cells.  相似文献   

20.
Prokaryotic chromosomes code for toxin–antitoxin (TA) loci, often in multiple copies. In E.coli, experimental evidence indicates that TA loci are stress-response elements that help cells survive unfavorable growth conditions. The first gene in a TA operon codes for an antitoxin that combines with and neutralizes a regulatory ‘toxin’, encoded by the second gene. RelE and MazF toxins are regulators of translation that cleave mRNA and function, in interplay with tmRNA, in quality control of gene expression. Here, we present the results from an exhaustive search for TA loci in 126 completely sequenced prokaryotic genomes (16 archaea and 110 bacteria). We identified 671 TA loci belonging to the seven known TA gene families. Surprisingly, obligate intracellular organisms were devoid of TA loci, whereas free-living slowly growing prokaryotes had particularly many (38 in Mycobacterium tuberculosis and 43 in Nitrosomonas europaea). In many cases, TA loci were clustered and closely linked to mobile genetic elements. In the most extreme of these cases, all 13 TA loci of Vibrio cholerae were bona fide integron elements located in the V.cholerae mega-integron. These observations strongly suggest that TA loci are mobile cassettes that move frequently within and between chromosomes and also lend support to the hypothesis that TA loci function as stress-response elements beneficial to free-living prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号