首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamics of internal carbon resources during masting behavior in trees   总被引:1,自引:0,他引:1  
Several proximate factors of masting have been provided. Here, I focus on the role of internal factors, especially the relationship between internal carbon resources and modular structures in trees. I summarize various studies of carbon resource allocation for reproduction during masting events in terms of the proximate factors of masting and discuss the modular structure in which trees accumulate and consume carbon resources as well as the timing when internal carbon resources affect masting since trees have complex resource dynamics among organs. The resource budget model, which provides a simple mechanistic explanation of the masting mechanism, is supported by various study lines. This model assumes decreasing levels of stored photosynthate after flowering and fruiting. According to several studies, however, carbon reserves do not decrease after fruiting in species in which the modules autonomously allocate current photosynthate for fruiting. In addition, it is important to elucidate when carbon resources affect masting events because during their long developmental processes, trees pass through various stages until they produce maturing fruits to create successful masting events. To explore the mechanisms of masting in future studies, it would be important to figure out how and when candidate factors (including nutrients other than carbon) may influence the entire reproduction process, for example, using field manipulation experiments.  相似文献   

2.
Han Q  Kabeya D  Hoch G 《Annals of botany》2011,107(8):1405-1411

Background and Aims

Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.

Methods

Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.

Key Results

The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.

Conclusions

Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations.  相似文献   

3.
Mechanisms by which the productivity of tropical ecosystems is limited by nutrients is a long-standing question, but little information is available on the nutrient dynamics supporting the masting phenomenon in Southeast Asian evergreen rainforests. In this study we examined the nutrient sink and potential nutrient sources of masting in a Bornean tropical forest. We investigated if nutrient flux in fine litter, tree stems, and soils changed temporally in response to intense flower and fruit production. Fifty-five litter traps were installed in a 2-ha plot at the onset of flowering (April 2010), and litter and nutrient fluxes were monitored for more than 4 years (May 2010–December 2014). Wood cores of trunks and coarse roots of abundant species (Shorea spp.) and soil samples were collected in May 2010, September 2010, and September 2011 (coinciding with peak flowering, peak fruiting, and 1 year after fruiting, respectively). The P and K fluxes in the total litter were significantly greater in the mast year (2010) than non-mast years, whereas the Mg, N, and Ca fluxes did not vary in relation to masting. In line with the nutrient fluxes, P and K concentrations in coarse roots of flowering individuals of S. multiflora decreased in September 2011. The present results suggest that tropical trees require extraordinary amounts of P and K for masting, and may retranslocate stored nutrients to meet the elevated nutrient demands for masting.  相似文献   

4.
Evidence is mounting that flowering by the mast-fruiting Dipterocarpaceae in Southeast Asia is triggered by ENSO events such that seeds are dispersed at the end of ENSO droughts. These droughts induce substantial defoliation and mortality of canopy trees, producing a favorable environment for seedling recruitment in the forest understory. Therefore, seedling release following droughts may have selected for synchronized, supra-annual fruiting in these rain forests. Currently, mast fruiting in Southeast Asia is generally regarded as an evolutionary response to seed predation by nomadic vertebrates. Separating the two causes for mast fruiting, seedling release and predator satiation, may be difficult if they are coupled in nature by ENSO droughts. Nevertheless, if the cue for masting is environmental, then the post-ENSO seedling environment should be considered a potential cause for masting, and if it operates in conjunction with predator satiation, then it may have provided the initial stimulus for supra-annual synchrony in fruiting.  相似文献   

5.
Many masting species switch resources between vegetative growth and reproduction in mast and non-mast years. Although masting of oak species is well known, there have been few investigations of the relationship between vegetative growth and reproduction based on long-term monitoring data, especially in evergreen oaks of subgenus Cyclobalanopsis. We investigated annual variations over 13?years in acorn and leaf production of three evergreen oak species in subgenus Cyclobalanopsis, genus Quercus (Fagaceae)??Q. acuta, Q. salicina and Q. sessilifolia??in western Japan. In these species, the maturation of acorns occurs in the second autumn after flowering, which is known as a biennial-fruiting habit. We found a pattern of acorn production and masting in alternate years that was synchronized in all three species. Masting was not correlated with temperature and precipitation. Annual leaf-fall also showed 2-year cycle in the three oak species; peak years were synchronized between species and peak leaf-fall alternated with acorn production in all three species. Furthermore, there was a significant negative correlation between acorn and leaf production in all three species. Data showing 2-year cycles of acorn and leaf production and the negative correlation between them supports the hypothesis of resource switching between vegetative growth and reproduction. The 2-year cycle might be the basic, intrinsic rhythm of resource allocation in biennial-fruiting Cyclobalanopsis species.  相似文献   

6.
 Masting of rowan Sorbus aucuparia L. has been studied in 45 sites in southern Norway for 22 years. We present data on the year-to-year variation in fruit setting of rowan, and show that masting is spatially synchronous in Norway and probably all over Fennoscandia. The apple fruit moth Argyresthia conjugella Zeller is an important seed predator on rowan. We present data on the abundance of apple fruit moth in rowanberries during these years and discuss the consequences of masting and intermasting of rowan for apple fruit moth as a pest of apple. We conclude that growth and climate have little impact on flowering intensity and suggest that masting of rowan is an adaptive defense against seed predation and a new example of predator satiation: intermast years inhibit predators and prepare the rowan for the subsequent mast. Received: September 3, 2001 / Accepted: February 24, 2003  相似文献   

7.
Masting is the intermittent and synchronous production of large crops, but its relation to tree growth remains elusive despite the ecological relevance of mast seeding. The production of huge fruit crops has been linked to the accumulation and consumption of resources as nutrients and carbohydrates, but no conclusive assessment has supported this assumption. To evaluate if masting takes place once trees’ canopies reach maximum foliage, changes in canopy cover were measured in Quercus ilex susbp. ballota stands before and after a masting event using the normalized difference vegetation index (NDVI). The results on the whole underline that masting in Q. ilex occurred once maximum levels of NDVI and canopy cover were reached. After the masting event, NDVI dropped, leaf shedding increased and trees produced shorter shoots, narrower tree rings and fewer acorns than before the masting event. These findings support our contention that an increase in canopy cover precedes masting.  相似文献   

8.
Masting is usually considered as a population phenomenon but it results from individuals?? reproductive patterns. Studies of individual patterns of seed production and their synchrony are essential to an understanding of the mechanisms of masting. The aim of this study was to find the relationship between population and individual levels of masting. We examined individuals?? contribution to masting, considering their endogenous cycles, interannual variability and associated weather cues, as well as inter-individual synchrony of fruit production. We studied masting of Sorbus aucuparia L., which in Europe is one of the most common trees bearing fleshy fruits and is strongly affected by a specialized seed predator. The data are 11-year measurements of fruit production of 250 individuals distributed on a 27-ha area of subalpine forest in the Western Carpathians (Poland). Population- and individual-level interannual variability of fruit production was moderate. Synchrony among individuals was relatively high for all years, but the trees were much less synchronized in heavy crop years than in years of low fruit production. Weak synchrony among trees for heavy production years suggests that the predator satiation hypothesis does not explain the observed masting behavior. Fruit production, both at individual and at population level, was highly correlated with weather conditions. However, the presence of masting cannot be fully explained by the resource-matching hypothesis either. We suggest that adverse weather conditions effectively limit fruit production, causing high inter-individual synchrony in low crop years, whereas the unsynchronized heavy crop years seem to have been affected by individually available resources.  相似文献   

9.
Masting, or the synchronous and irregular production of seed crops, is controlled by environmental conditions and resource budgets. Increasing temperatures and shifting precipitation regimes may alter the frequency and magnitude of masting, especially in species that experience chronic resource stress. Yet the effects of a changing climate on seed production are unlikely to be uniform across populations, particularly those that span broad abiotic gradients. In this study, we assessed the spatiotemporal patterns of masting across the latitudinal distribution of a widely distributed dryland conifer species, piñon pine Pinus edulis. We quantified seed cone production from 2004 to 2017 using cone abscission scars in 187 trees from 28 sites along an 1100 km latitudinal gradient to investigate the spatiotemporal drivers of seed cone production and synchrony across populations. Populations from chronically hot and dry areas (greater climatic water deficits and less monsoonal precipitation) tended to have greater interannual variability in seed cone production and smaller crop sizes. Mast years generally followed years with low vapor pressure deficits and high precipitation during key periods of the reproductive process, but the strength of these relationships varied across the region. Populations that received greater monsoonal precipitation were less sensitive to late summer vapor pressure deficits during seed cone initiation yet more sensitive to spring vapor pressure deficits during pollination. Spatially correlated patterns of vapor pressure deficit better predicted synchrony in seed cone production than geographic distance, and these patterns were conserved at distances up to 500 km. These results demonstrate that aridity drives spatiotemporal variability in seed cone production. As a result, projected increases in aridity are likely to decrease the frequency and magnitude of masting in these dry forests and woodlands. Declines in seed production may compound climatic limitations to recruitment and impede tree regeneration, with cascading effects for numerous wildlife species.  相似文献   

10.
The existence of mast fruiting has not been well documented in the Neotropics. The occurrence of a mast fruiting episode in the population of the tree Peltogyne purpurea in the Osa Peninsula of Costa Rica is described. In February and March of 2000 most of the trees of this species produced a large fruit crop, compared with 1995-1999, when the number of fruit producing trees was very low or zero and those that did bear fruit, did so at a low intensity. In contrast, the fruit crop of 2000 was massive, all trees examined produced fruits and the intensity of fruiting was maximal. There is not enough information on the event for a hypothesis to be formed because the climatic or biological cues that triggered this sporadic flowering are unknown and there is no meteorological data available for this area. Populations with this mode of reproduction may experience local extinction bacause of logging operations.  相似文献   

11.

Backgrounds and Aims

Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa.

Methods

The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated.

Key Results

Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation.

Conclusions

Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees.  相似文献   

12.
Sork  V. L. 《Plant Ecology》1993,107(1):133-147
Mast-seeding is the synchronous production of large seed crops within a population or community of species every two or more years. This paper addresses three non-mutually exclusive hypotheses explaining the evolution of mast-seeding in temperate tree species, especially the genus Quercus: (1) mast-seeding is a consequence of mast-flowering which evolves to increased pollination efficiency in mast-flowering years; (2) mast-seeding has evolved as an anti-predator adaptation by which large seed crops during mast years satiate the seed predators and allow survival of some of the seeds; (3) selection on seed size by habitat can indirectly affect the evolution of masting if trees with large seeds require more time to accumulate reserves to mature those seeds. I find support for the pollination hypothesis in several wind-pollinated temperate tree species but not oaks. However, oaks show evidence favoring the predation and seed size hypotheses. I then develop a model to illustrate the relationships among the three hypotheses in their effects on the evolution of masting. Finally, using data from herbaria and Floras, the influence of selection via flowering, fruiting, and seed size in the evolution of masting in tropical oaks is discussed. I conclude that the need for a supra-annual cue to synchronize flowering and fruiting as well as the larger seed size found in many tropical oak species should contribute to the evolution of masting to a greater extent than seen among temperate oaks.  相似文献   

13.
Summary Little is known about the adaptive value of mast seeding, a common phenomenon in temperate trees and shrubs. Masting is likely to affect both seed dispersal and seed predation. In systems where similar taxa of animals are involved in these two processes, the consequences of mast seeding are likely to be particularly complicated. This study examined the effects of mast seeding in a cycad, Macrozamia communis, on the dispersal of seeds, the pattern of dispersion of seeds and post-dispersal predation on seeds. Dispersal of seeds by possums was poorer from source plants in a masting population than from source plants in an adjacent, non-masting population. This resulted in fewer seeds per seeding female plant in the masting plot being dispersed to favourable sites. We conclude that this is caused by the feeding behaviour and movements of possums in the masting site. The abundance of seeds in this site did not satiate the post-dispersal predators, native rats. In fact, more seeds in this site were eaten than in the nonmasting site. We suggest that the mast seeding observed in M. communis may not be adaptive, but is more likely a consequence of other factors which synchromize flowering within local populations.  相似文献   

14.
Mast‐seeding plants often produce high seed crops the year after a warm spring or summer, but the warm‐temperature model has inconsistent predictive ability. Here, we show for 26 long‐term data sets from five plant families that the temperature difference between the two previous summers (ΔT) better predicts seed crops. This discovery explains how masting species tailor their flowering patterns to sites across altitudinal temperature gradients; predicts that masting will be unaffected by increasing mean temperatures under climate change; improves prediction of impacts on seed consumers; demonstrates that strongly masting species are hypersensitive to climate; explains the rarity of consecutive high‐seed years without invoking resource constraints; and generates hypotheses about physiological mechanisms in plants and insect seed predators. For plants, ΔT has many attributes of an ideal cue. This temperature‐difference model clarifies our understanding of mast seeding under environmental change, and could also be applied to other cues, such as rainfall.  相似文献   

15.
Masting consists of the synchronous highly variable seed production among years by a plant population. We studied spatiotemporal variation in fruit production in ten populations of Buxus balearica (six in the Balearic Islands and four in the Iberian Peninsula) from 2001 to 2004 in the light of masting. In some of them we assessed, by means of both observational and experimental data, the relationship between fruit production and some abiotic variables, the role of previous reproduction, the "pollination efficiency" and the "predator satiation" hypotheses, as well as the consequences for seedling density and survival. Fruit production in B. balearica showed substantial between-year variation, especially in island compared to mainland populations. Correlative evidence indicated that this variation and its geographic pattern were related to differences between regions in rainfall variability, cost of reproduction and the degree of ambophily. We found no indication of predator satiation. However, experimental tests failed to support many of our results, namely a negative effect of previous reproduction on future flowering in island populations and lower pollen limitation with increasing flower production. We therefore warn against exclusive reliance on correlations when testing hypotheses related to masting. In addition, seedling recruitment increased after some episodes of high fruit production but probably additional factors had a role in recruitment, suggesting that mast events not always translate into increased reproductive success. Although a limited time series only allows considering B. balearica as showing 'putative' masting, weather and pollination-related processes are good candidates for further exploration of fruiting patterns and processes at a large spatial scale.  相似文献   

16.
The occurrence of flowering and fruiting in tropical trees will be affected by a variety of factors, linked to availability of resources and suitable climatic triggers, that may be affected by increasing global temperatures. Community‐wide flowering and fruiting of 2526 trees in 206 plots were monitored over 24 years in the Budongo Forest Reserve (BFR), Uganda. Factors that were assessed included the size of the tree, access to light, the impacts of liana load, effects of tree growth, and variation between guilds of trees. Most flowering occurs at the end of the long dry season from February to April. Trees that had access to more light flowered and fruited more frequently. Pioneer and non‐pioneer light‐demanding species tended to reproduce more frequently than shade‐bearing species. Trees that grew faster between 1993 and 2011 also fruited more frequently. When examining all factors, growth rate, tree size, and crown position were all important for fruiting, while liana load but not growth rate was important in reducing flowering. Trees in BFR show a large decline in fruiting over 24 years, particularly in non‐pioneer light demanders, shade‐bearers, and species that produce fleshy fruits eaten by primates. The decline in fruit production is of concern and is having impacts on primate diets and potential recruitment of mahogany trees. Whether climate change is responsible is unclear, but flowering of the guilds/dispersal types which show declines is correlated with months with the coolest maximum temperatures and we show temperature has been increasing in BFR since the early 1990s.  相似文献   

17.
Synchronised and fluctuating reproduction by plant populations, called masting, is widespread in diverse taxonomic groups. Here, we propose a new method to explore the proximate mechanism of masting by combining spatiotemporal flowering data, biochemical analysis of resource allocation and mathematical modelling. Flowering data of 170 trees over 13 years showed the emergence of clustering with trees in a given cluster mutually synchronised in reproduction, which was successfully explained by resource budget models. Analysis of resources invested in the development of reproductive organs showed that parametric values used in the model are significantly different between nitrogen and carbon. Using a fully parameterised model, we showed that the observed flowering pattern is explained only when the interplay between nitrogen dynamics and climatic cues was considered. This result indicates that our approach successfully identified resource type‐specific roles on masting and that the method is suitable for a wide range of plant species.  相似文献   

18.
It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190–260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83–84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different “costs of reproduction” in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting.  相似文献   

19.
Evolutionary selective forces, like predator satiation and pollination efficiency, are acknowledged to be major causes of masting (the variable, periodic and synchronic production of seeds in a population). However, a number of recent studies indicate that resources might also play an important role on shaping masting patterns. Dioecious masting species offer a privileged framework to study the role of resources on masting variation, since male and female plants often experience different reproductive costs and selective pressures. We followed masting and reproductive investment (RI) of the dioecious tree Juniperus thurifera in two populations along 10 years and studied the different response of males and females to experimentally increased water and nutrient availability in a third population. Juniperus thurifera females invested in reproduction three times more resources than males. Such disparity generated different resource‐use strategies in male and female trees. Tree‐ring growth and water use efficiency (WUE) confirmed that sexes differed in their resource investment temporal pattern, with males using current resources for reproduction and females using resources accumulated during longer periods. Watered and fertilized female trees presented significantly higher flowering reproductive investments than males and experienced an extraordinary mast‐flowering event. However, seeding RI and mast seeding were not affected by the treatment. This suggests that although resource availability affects the reproductive output of this species, there are other major forces regulating masting on J. thurifera. During 10 years, J. thurifera male and female trees presented high and low flowering years more or less synchronously. However, not all mast flowering episodes resulted in mast seeding, leading to masting uncoupling between flowering and seeding. Since flowering costs represent only 1% of females’ total reproductive investments, masting uncoupling could be a beneficial bet‐hedging strategy to maximize reproductive output in spite of unpredictable catastrophic events.  相似文献   

20.
Smith  S. J.  McCarthy  B. C.  Hutchinson  T. F.  Snell  R. S. 《Plant Ecology》2021,222(4):409-420
Plant Ecology - Masting is the synchronous and highly variable production of fruit within a population. Although several hypotheses have been proposed to explain why and how masting evolved in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号