共查询到20条相似文献,搜索用时 15 毫秒
1.
Watersheds of the US Geological Survey's Hydrologic Benchmark Network program were used in estimating annual yield of total nitrogen and nitrogen fractions (ammonium, nitrate, dissolved organic N, particulate N) in relation to amount of runoff, elevation, and watershed area. Only watersheds minimally disturbed with respect to the nitrogen cycle were used in the analysis (mostly natural vegetation cover, no point sources of N, atmospheric deposition of inorganic N < 10 kg ha–1 y–1). Statistical analysis of the yields of total nitrogen and nitrogen fractions showed that elevation and watershed area bear no significant relationship to nitrogen yield for these watersheds. The yields of total nitrogen and nitrogen fractions are, however, strongly related to runoff (r
2 = 0.91 for total N). Annual yield increases as runoff increases, but at a rate lower than runoff; annual discharge-weighted mean concentrations decline as annual runoff increases. Yields of total nitrogen and most nitrogen fractions bear a relationship to runoff that is nearly indistinguishable from a relationship that was documented previously for minimally disturbed watersheds of the American tropics. Overall, the results suggest strong interlatitudinal convergence of yields and percent fractionation for nitrogen in relation to runoff. 相似文献
2.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon,
a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to
studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall
mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged
(defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other
studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds
that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well
above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute
to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with
very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest
watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well
as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any
N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add
to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal
scales in a region of relatively low anthropogenic N input. 相似文献
3.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the
riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved
inorganic N (DIN; NH4
+- and NO3
−-N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the
two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3
−-N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream,
DIN shifted to dominance by NH4
+-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total
dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON
rather than inorganic N. Concentrations of NH4
+ and NO3
− were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water.
Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled
by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological
differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream
below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration
is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic
export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly
modify the importance of specific biotic components. 相似文献
4.
The Long-term Effects of Disturbance on Organic and Inorganic Nitrogen Export in the White Mountains, New Hampshire 总被引:14,自引:8,他引:14
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream
N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories
ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic
N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US,
a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate
export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional
status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns
of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in
DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained
at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological
removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate
may occur much sooner.
Received 27 April 1999; accepted 30 May 2000. 相似文献
5.
Patterns in the Chemical Fractionation of Organic Nitrogen in Rocky Mountain Streams 总被引:6,自引:2,他引:6
The intraannual dynamics of particulate organic nitrogen (PON) and two fractions of dissolved organic nitrogen (DON) were investigated in two Rocky Mountain streams draining watersheds with low rates of N deposition. Organic nitrogen accounted for over 60% of the total annual nitrogen export and consisted mostly of DON. Nitrate peaked during winter months and declined considerably during the growing season (less than 10 µg/L) suggesting the importance of biotic uptake. Concentrations of PON, total DON, and two DON fractions (humic and non-humic) peaked during spring runoff and were positively related to discharge, indicating hydrologic influence. Total DON and its two fractions showed significant inverse relationships to nitrate, indicating that DON and nitrate followed different intraannual patterns. Despite its seasonal fluctuations in concentration, PON showed a consistent carbon–nitrogen (C:N) ratio suggesting that it was relatively uniform in composition. Fractionation studies indicated that DON was primarily of non-humic origin, whereas dissolved organic carbon (DOC) was mainly derived from humic sources. The two DON fractions differed from each other in seasonal patterns of concentration and C:N ratio. The proportion of humic DON increased during snowmelt, and there were diverging seasonal patterns in the C:N ratio of the two fractions implying variations in bioavailability. Although organic nitrogen is commonly treated as a single pool in ecological studies, our results indicated that DON consists of fractions that undergo large intraannual changes in proportions and chemical composition. Treatment of DON as a single pool may be misleading from the viewpoint of understanding ecosystem processes directly related to changes in its sources and biological reactivity. 相似文献
6.
CLAY P. ARANGO JENNIFER L. TANK JAMIE L. SCHALLER TODD V. ROYER MELODY J. BERNOT MARK B. DAVID 《Freshwater Biology》2007,52(7):1210-1222
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high. 相似文献
7.
陆地生态系统可溶性有机氮研究进展 总被引:11,自引:1,他引:11
可溶性有机氮(dissolved organic nitrogen DON)的流动是陆地生态系统氮循环的重要组成部分。本文就陆地生态系统DON的来源、组成、性质;森林生态系统DON的流动、季节动态以及DON在氮循环中的地位等方面作了概括和探讨。今后的陆地生态系统DON的研究应该集中在以下几个方面:确定陆地生态系统中DON的各分室DON的浓度、流量;DON的源与汇问题;量化不同生态系统中DON库的大小和组成;研究DON在氮的矿化、微生物的固持、以及植物吸收等氮循环过程中的地位;对比研究DON与DOC(dissolved organic carbon)的动态差别;探讨DON与植物营养和碳积累的关系等。 相似文献
8.
Nitrogen Export from Forested Watersheds in the Oregon Coast Range: The Role of N<Subscript>2</Subscript>-fixing Red Alder 总被引:3,自引:2,他引:3
Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species importance is the influence of N2-fixing red alder (Alnus rubra) on nutrient cycling in the forests of the Pacific Northwest. To understand the influence of red alder on watershed nutrient export, we studied the chemistry of 26 small watershed streams within the Salmon River basin of the Oregon Coast Range. Nitrate and dissolved organic nitrogen (DON) concentrations were positively related to broadleaf cover (dominated by red alder: 94% of basal area), particularly when near-coastal sites were excluded (r
2 = 0.65 and 0.68 for nitrate-N and DON, respectively). Nitrate and DON concentrations were more strongly related to broadleaf cover within entire watersheds than broadleaf cover within the riparian area alone, which indicates that leaching from upland alder stands plays an important role in watershed nitrogen (N) export. Nitrate dominated over DON in hydrologic export (92% of total dissolved N), and nitrate and DON concentrations were strongly correlated. Annual N export was highly variable among watersheds (2.4–30.8 kg N ha–1 y–1), described by a multiple linear regression combining broadleaf and mixed broadleaf–conifer cover (r2 = 0.74). Base cation concentrations were positively related to nitrate concentrations, which suggests that nitrate leaching increases cation losses. Our findings provide evidence for strong control of ecosystem function by a single plant species, where leaching from N saturated red alder stands is a major control on N export from these coastal watersheds. 相似文献
9.
通过4个土壤深度100个样品14个波长(250、254、260、265、272、280、285、300、340、350、365、400、436和465 nm)土壤溶液吸光度值和土壤碳(可溶性碳DOC、全碳SOC)、土壤氮(可溶性氮DON、全氮SON)的测定,旨在探讨土壤溶液吸光度指示土壤碳氮指标的可行性及土壤深度对其可能影响。结论如下:(1)表层土壤和深层土壤吸光度值均随波长增加而指数下降,但表层土壤吸光度值较高,下降速度较快,较低波长更有利于区分表层和深层土壤溶液吸光度差异;和深层土壤相比,表层0~20 cm土壤SOC、DON和SON与不同波长吸光度有更好的相关性,但DOC与不同波长吸光度的相关性表层和深层差异较小;(2)250~300 nm的8个吸光度值具有高度相关性,它们在分析土壤溶液吸光度变化时具有等效性;基于所有数据的拟合分析发现,低波长(如254 nm)吸光度与土壤SOC、DON和SON相关性最高(R2=0.53~0.59),而更高波长(340 nm及以上)相关性明显降低。但DOC与254、340、365和400 nm吸光度相关性相差不大(R2=0.25~0.33)。这些发现说明,土壤溶液吸光度值,特别是低波长(250~300 nm)可以表征落叶松林土壤碳、氮相关指标的变化,但是需要考虑不同碳氮指标以及不同土层之间的差异。 相似文献
10.
施氮对不同品种冬小麦植株硝态氮和硝酸还原酶活性的影响 总被引:13,自引:4,他引:13
以黄土高原南部半湿润区土垫旱耕人为土为供试土壤进行盆栽试验,以NR 9405、9430、偃师9号、小偃6号、陕229号和西农2208冬小麦品种为供试材料,研究施氮对不同品种冬小麦植株硝态氮含量和硝酸还原酶活性(NRA)的影响.结果表明,施氮能明显增加叶片NRA.不施氮时除小偃6号和偃师9号外,其余品种NRA在全生育时期的动态变化均呈双峰曲线,2个高峰期分别在返青期和开花期,且开花期高峰值(36.17 NO2-μg.-g 1FW.h-1)明显比返青期峰值(15.407 NO2-μg.-g 1FW.h-1)大;施氮时不同品种叶片NRA在全生育期呈单峰曲线变化,最高峰在开花期,平均峰值为80.93 NO2-μg.-g 1FW.h-1),比同期不施氮处理增加1倍以上.施氮后地上部硝态氮含量在各时期均显著提高,在小麦生育前期(出苗到拔节)表现最为显著.氮肥对不同品种硝态氮含量的影响程度基本上与对NRA的影响程度相反,即施氮后硝态氮增加幅度小的品种,NRA却增加幅度大. 相似文献
11.
The Role of Dissolved Organic Carbon, Dissolved Organic Nitrogen, and Dissolved Inorganic Nitrogen in a Tropical Wet Forest Ecosystem 总被引:3,自引:0,他引:3
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3−). The dominance of NO3– relative to the total amount nitrate of N leaching from the soil shows that NO3– is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited. 相似文献
12.
World-wide eutrophication of estuaries has made accurate estimation ofland-derived nitrogen loads an important priority. In this paper we verifypredictions of nitrogen loads made by the Waquoit Bay Nitrogen LoadingModel (NLM). NLM is appropriate for watersheds with mixes of forested,agricultural, and residential land uses, and underlain by coarseunconsolidated sediments. NLM tracks the fate of nitrogen inputs byatmospheric deposition, fertilizer use, and wastewater disposal, and assignslosses of nitrogen from each source as the nitrogen is transported throughthe land use mosaic on the watershed surface, then through the underlyingsoils, vadose zones, and aquifers.We verified predictions of nitrogen loads by NLM in two independent ways.First, we compared NLM predictions to measured nitrogen loads in differentsubestuaries in the Waquoit Bay estuarine system. Nitrogen loads predictedby NLM were statistically indistinguishable from field-measured nitrogenloading rates. The fit of model predictions to measurements remained goodacross the wide range of nitrogen loads, and across a broad range in size(10–10,000 ha) of land parcels. NLM predictions were most precise whenspecific parcels were larger than 200 ha, and within factors of 2 for smallerparcels.Second, we used NLM to predict the percentage of nitrogen loads toestuaries contributed by wastewater, and compared this prediction to the15N signature distinguishable from N derived fromatmospheric or fertilizer sources. The greater the contribution ofwastewater, the heavier the 15N value in groundwater. Thesignificant linear relation between NLM predictions of percent wastewatercontributions and stable isotopic signature corroborated the conclusionthat model outputs provide a good match to empirical measurements. Thegood agreement obtained in both verification exercises suggests that NLMis an useful tool to address basic and applied questions about how land usepatterns alter the fate of nitrogen traversing land ecosystems, and thatNLM provides verified estimates of the land-derived nitrogen exports thattransform receiving aquatic ecosystems. 相似文献
13.
Dissolved organic matter quantity and quality from freshwater and saltwater lakes in east-central Alberta 总被引:3,自引:0,他引:3
Concentrations of dissolved organic matter (DOM) in surface waters of sub-humid to semi-arid lakes in east-central Alberta increase with increasing salinity and water residence time from about 20 to 330 mg L–1 as dissolved organic carbon (DOC). This pattern is opposite to that observed among freshwater lakes spanning a gradient in water residence times, and is probably caused by evaporative concentration of refractory DOM. The proportion of total DOC, operationally defined as humic substances using XAD-8 resin, was high, though similar to surface waters typically referred to as "humic", and independent of salinity. Very long water residence times (hundreds of years) in saline lakes favors evapoconcentration of low-color, low molecular weight DOM, with N-content characteristic of allochthonous DOM. 相似文献
14.
As nitrogen is known to be a limiting factor for plant growth, we were interested in the relationship between soil microbial activity and the nitrogen assimilation of 5 different halophytes from 4 saline sites near the lake “Neusiedlersee”, Austria. The following were studied between May and October 1985: nitrogen fixation (15N2 and acetylene reduction): N-mineralization; several soil characteristics and in vivo nitrate reductase activity of roots and shoots of these plants. NO?3, org. N- and carboxylate contents of both roots and shoots, as well as the effect of NO?3-fertilization on the amounts of these substances, were determined on plants growing in the field during a 3-day period in September 1985. Fertilization led to a decrease in acetylene reduction activity at most sites, and an increase in the nitrate reductase activity of the shoots of all plants. Overall, carboxylate and organic nitrogen contents of these halophytes did not change in response to fertilization. Only in the roots of Aster tripolium and Atriplex hastata was there a marked increase in the nitrate reductase activity in response to fertilization. Species growing at the same site, such as Plantago maritima and Lepidium crassifolium showed contrasting levels of assimilatory activity. Apparent low rates of ammonification and nitrification were detected in soils from the 4 sites. The results are discussed in relation to the nitrogen and carbon economies of the microorganisms and plants. 相似文献
15.
Myron J. Mitchell Charles T. Driscoll Jeffrey S. Owen Douglas Schaefer Robert Michener Dudley J. Raynal 《Biogeochemistry》2001,56(2):93-133
The biogeochemistry of nitrogen (N)was evaluated for three forest ecosystems[Woods Lake (WL), Pancake-Hall Creek (PHC) andHuntington Forest (HF)] in the Adirondackregion of New York, U.S.A. to evaluate theresponse of a range of N atmospheric inputsand experimental N additions. Bulk Ndeposition was higher at sites in the westthan those in the central and easternAdirondacks. These higher atmospheric N inputswere reflected in higher bulk throughfallfluxes of N (WL and PHC, 10.1 and 12.0 kg Nha–1 yr–1, respectively) in thewestern Adirondacks than at HF (4.6 kg Nha–1 yr–1) in the centralAdirondacks. Nitrogen was added to plots as(NH4)2SO4 at 14 and 28 kg Nha–1 yr–1 or as HNO3 at 14 kg Nha–1 yr–1. Litter decompositionrates of Fagus grandifolia and Acerrubrum were substantially higher at WL andPHC compared to HF but were not affected byexperimental N additions. Results usingmineral soil bags showed no effects of Naddition on N and C concentrations in soilorganic matter, but C and N concentrationincreases were less at WL and PHC compared toHF. Soil solution nitrate (NO3
–)concentrations at 15-cm depth in the referenceplots were higher at PHC than at WL and HFwhile at 50-cm concentrations were higher atPHC and WL than at HF. The reference plots atthe two sites (WL and PHC) with the highestatmospheric inputs of N exhibited lower Nretention (53 and 33%, respectively) than HF(68%) in reference plots. The greatestincrease in NO3
– loss in response tothe experimental treatments occurred at HFwhere the HNO3 additions resulted in thehighest NO3
– concentrations andlowest N retentions. In contrast, at WL andPHC increases in soil water NO3
–were not evident in response to experimental Nadditions. The results suggest that the twosites (WL and PHC) in the western Adirondacksdid not respond to additional N inputsalthough they have experienced elevatedatmospheric N inputs and higher N drainagelosses in reference plots than the HF site inthe central Adirondacks. Some of thesedifferences in site response may have alsobeen a function of stand age of WL and PHCthat were younger (24 and 33 years,respectively) than the HF (age 70).Highest NO3
– fluxes in thereference plots across the sites correspondedto higher 15N values in soil andplants. An experimental addition experimentat PHC found that the forest floor and themineral soil were the largest sinks forexperimentally added N. 相似文献
16.
以大田试验获得的大麦氮敏感基因型BI-45为材料,利用溶液培养方法,测定了苗期株高、根长、叶绿素含量、含氮量、谷氨酰胺合成酶和硝酸还原酶活性,以及与氮代谢相关的基因(GSI-GSl-2、GSI-3、GS2、Narl、NRT2.J、NRT2-2、NRT2-3和NRT2-4)的表达。结果表明:相对于正常供氮,氮饥饿胁迫下,BI-45根和叶中的氮素利用率提高,含氮量降低,叶绿素含量减少,根冠比增加;叶片中的谷氨酰胺合成酶活性和硝酸还原酶的活性高于根,但是,与叶中的相比,根中的谷氨酰胺合成酶活性升高及硝酸还原酶活性降低的差异性更显著;与正常供氮相比,氮饥饿处理下,根中基因傩家族,基Narl和硝酸盐转运蛋白基因NRT2家族的相对表达量皆达到显著性差异,其中GSl-I、GSl-2和NRT2-2在苗期大麦氮饥饿处理下表现尤为突出,并且在6h都有上调表达。 相似文献
17.
Nitrogen mineralization in upland Precambrian Shield catchments: Contrasting the role of lichen-covered bedrock and forested areas 总被引:1,自引:1,他引:0
Sébastien Lamontagne 《Biogeochemistry》1998,41(1):53-69
The upland boreal forest at the Experimental Lakes Area (northwestern Ontario, Canada) is characterized by treed soil islands interspersed within lichen and moss-covered bedrock outcrops. N mineralization was 2.5-fold and net nitrification was 13-fold higher on an areal basis over bedrock surfaces because of high mineralization rates under lichen and moss patches. The higher average soil temperature in lichen and moss patches could not account for the difference in mineralization rates. Lichens did not provide a significant additional source of N because they did not fix atmospheric N. A refractory conifer litter with a high C:N probably favours the immobilization of N in forest islands. Buried bag and in situ core incubations yielded similar net N mineralization rates but core incubations underestimated net nitrification rates. Both methods did not adequately measure dissolved organic N (DON) production rates because soil disturbance caused high initial DON concentrations. The higher export of mineral N from bedrock surfaces is probably a combination of the lower retention of N in precipitation and leaching of mineralized N from lichen and moss patches. 相似文献
18.
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because
DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation–emission fluorescence
spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic carbon (BDOC) incubations to investigate the chemical quality of DOM in soil water collected
from 25 cm piezometers in four different wetland and forest soils: bog, forested wetland, fen and upland forest. There were
significant differences in soil solution concentrations of dissolved organic C, N, and P, DOC:DON ratios, SUVA254 and BDOC among the four soil types. Throughout the sampling period, average DOC concentrations in the four soil types ranged
from 9–32 mg C l−1 and between 23–42% of the DOC was biodegradable. Seasonal patterns in dissolved nutrient concentrations and BDOC were observed
in the three wetland types suggesting strong biotic controls over DOM concentrations in wetland soils. PARAFAC modeling of
excitation–emission fluorescence spectroscopy showed that protein-like fluorescence was positively correlated (r
2 = 0.82; P < 0.001) with BDOC for all soil types taken together. This finding indicates that PARAFAC modeling may substantially improve
the ability to predict BDOC in natural environments. Coincident measurements of DOM concentrations, BDOC and PARAFAC modeling
confirmed that the four soil types contain DOM with distinct chemical properties and have unique fluorescent fingerprints.
DOM inputs to streams from the four soil types therefore have the potential to alter stream biogeochemical processes differently
by influencing temporal patterns in stream heterotrophic productivity. 相似文献
19.
2008年雪灾对武夷山毛竹林土壤微生物生物量氮和可溶性氮的影响 总被引:2,自引:0,他引:2
2008年1月,我国南方发生了严重的冰冻雪灾,通过改变资源的有效性和异质性而对生态系统过程产生显著影响。本研究以福建武夷山遭受冰冻雪灾不同危害程度(轻、中、重3种类型)的毛竹林为试验地,探讨了08雪灾干扰后毛竹林不同土层(0~10、10~25、25~40cm)土壤微生物生物量氮和可溶性氮的变化特征。结果表明,除25~40cm土层土壤微生物生物量氮含量外,各土层土壤微生物生物量氮、硝态氮含量均随受灾程度的加重而显著增加,随土层深度的增加而减少,0~10cm土层土壤可溶性有机氮,重度受灾竹林也显著高于轻度与中度受灾竹林。不同受灾竹林间的土壤微生物生物量氮、硝态氮、可溶性有机氮含量均与土壤温度、雪灾输入林地生物量显著正相关,与竹林郁闭度显著负相关,与土壤湿度不相关。本研究结果揭示,由于雪灾导致生物与非生物因素的改变,土壤中的氮可能以硝酸盐和可溶性有机氮的形式从生态系统中流失。 相似文献
20.
In cabbage (Brassica oleracea var. capitata), a thermal shock treatment of 24 h at 35 °C at the start of the culture period resulted in higher embryos per 100 anthers (30.0) compared to a treatment of 48 h. Similarly , a chilling treatment of 24 h at 4 °C resulted in a higher embryo yield (6.0) per 100 anthers compared to a treatment of 48 h. However, the embryo yields were significantly higher (p> 0.01) in thermal shock than chilling treatments in all experiments. Treatments of 6 days at either 35 °C or 4 °C gave no embryos. The most responsive cultivar was the F1 hybrid , Hercules, in all experiments. Although anther culture was successful in the other genotypes, the open pollinated ones, the highest number of embryo yields per 100 anthers was obtained in the hybrid. High temperature treatment before culture had a beneficial effect on the embryo yields. The responsiveness of anthers to addition of increasing concentration of silver nitrate (AgN03) (the ethylene inhibitor) to the culture medium, showed a progressive increase in the embryo yields in all the genotypes. Since embryos were also formed in the absence of silver nitrate, probably, due to a greater genotype × medium interaction, it is noted that the presence of silver nitrate in the medium may not be essential for cabbage anther culture as reported earlier. The findings of this study may be recommended for large production of cabbage embryos in culture. 相似文献