首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonucleic acid (RNA) extracted from Neurospora crassa has been fractionated by oligodeoxythymidylic acid [oligo(dT)]-cellulose chromatography into polyadenylated messenger RNA [poly(A) mRNA] and unbound RNA. The poly(A) mRNA, which comprises approximately 1.7% of the total cellular RNA, was further characterized by Sepharose 4B chromatography and polyacrylamide gel electrophoresis. Both techniques showed that the poly(A) mRNA was heterodisperse in size, with an average molecular weight similar to that of 17S ribosomal RNA (rRNA). The poly(A) segments isolated from the poly(A) mRNA were relatively short, with three major size classes of 30, 55, and 70 nucleotides. Gel electrophoresis of the non-poly(A) RNA indicated that it contained primarily rRNA and 4S RNA. The optimal conditions were determined for the translation of Neurospora mRNA in a cell-free wheat germ protein-synthesizing system. Poly(A) mRNA stimulated the incorporation of [14C]leucine into polypeptides ranging in size from 10,000 to 100,000 daltons. The RNA that did not bind to oligo(dT)-cellulose also stimulated the incorporation of [14C]leucine, indicating that this fraction contains a significant concentration of mRNA which has either no poly(A) or very short poly(A) segments. In addition, the translation of both poly(A) mRNA and unbound mRNA was inhibited by 7-methylguanosine-5'-monophosphate (m7G5'p). This is preliminary evidence for the existence of a 5'-RNA "cap" on Neurospora mRNA.  相似文献   

2.
The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.  相似文献   

3.
4.
The change in activity of nuclear poly(ADP-ribose) glycohydrolase during the cell cycle of HeLa S3 cells was investigated. The poly(ADP-ribose) glycohydrolase activity was solubilized from HeLa S3 cell nuclei and chromosomes only by sonication at high ionic strength. The enzyme hydrolyzed poly(ADP-ribose) exoglycosidically, producing ADP-ribose. After release from mitosis, the activity of the solubilized nuclear poly(ADP-ribose) glycohydrolase per nucleus or per unit protein, assayed with [3H]poly(ADP-ribose) (average chain length, n = 15) as substrate, was lowest in the early G1 phase and highest in the late G1 phase. The specific activity in the late G1 phase was about two times that in the early G1 phase. The high activity remained constant during the S-G2-M phase. A similar change during the cell cycle was observed after release from hydroxyurea block. These results suggest that the activity of poly(ADP-ribose) glycohydrolase doubled during the G1 phase of the cell cycle of HeLa S3 cells.  相似文献   

5.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

6.
S Tracy  D E Kohne 《Biochemistry》1980,19(16):3792-3799
A method is described for using very high specific activity [3H]poly(deoxythymidylate) [[3H]poly(dT)] to detect, size, and quantiate subnanogram amounts of nonradioactive polyadenylated RNA. Short (approximately 100 nucleotides long) [3H]poly(dT) is hybridized to the poly(adenylate) [poly(A)] tracts in polyadenylated RNAs. The RNA may then be sized and quantitated by sucrose gradient analysis. The addition of the small [3H]poly(dT) molecules does not significantly alter the s values of RNAs. The amount of [3H]poly(dT) hybridized to polyadenylated RNA increases linearly with the amount of RNA. A room temperature hydroxylapatite (HA) method has also been developed to detect and quantitate poly(A)-containing RNA after hybridization to radioactive poly(dT). S-1 nuclease (S-1) analysis can also be used to measure the poly(A) content of polyadenylated RNA to less than nanogram RNA amounts. For both the S-1 and HA approaches, the amount of [3H]poly(dT) hybridized increases with the amount of RNA and the methods can detect to as little as 10(-12) g of polyadenylated RNA with [3H]poly(dT). Greater sensitivity is possible with higher specific activity poly(dT). The approaches presented here significantly extend the uses of radioactive homopolymers to detect, quantitate, and characterize RNAs containing complementary homopolymer tracts.  相似文献   

7.
Cultured mouse lymphoma cells incorporated [3H]leucine and [32P]phosphate into nuclear stress proteins within 3 h after exposure to either elevated temperature (45 degrees C) or sodium arsenite. Radiolabeled proteins were detected by autoradiography after two-dimensional polyacrylamide gel electrophoresis. To determine the cell cycle stage specificity of labeling, nuclei were isolated and sorted into two cell cycle phases using a fluorescent activated cell sorter. After either heat shock or sodium arsenite treatment, the majority of [3H]leucine incorporation into stress proteins occurred during the G0 + G1 phase with minimal labeling in the G2 phase. On the other hand, 32P labeling of stress proteins occurred in both the G0 + G1 and G2 phases after exposure to sodium arsenite, while incorporation of 32P was limited after heat stress. Following sodium arsenite treatment, a distinct set of four stress proteins (80-84 kDa) was detected with [3H]leucine only in G0 + G1 phase, but with [32P]phosphate these stress proteins were labeled in both G0 + G1 and G2. There was differential [32P]phosphate labeling between proteins of the 80-84 kDa set during cell cycling. Individual proteins of this set were isolated from gel plugs after sodium arsenite or heat-shock treatment. Coelectrophoresis of proteins from the two treatment groups showed that they had similar electrophoretic mobilities. All four proteins of the 80-84 kDa set (sodium arsenite induced) possessed similar polypeptide maps after digestion with V8 protease. Cytofluorometric analysis demonstrated a reduction in the number of nuclei in both S and G2 phases of the cell cycle two h after heat shock, but not following sodium arsenite treatment. However, there was a significant depression in the number of nuclei in S and G2 4 h after exposure to sodium arsenite and very modest labeling with 32P of stress proteins was observed at this time.  相似文献   

8.
Tanimoto EY  Rost TL  Comai L 《Plant physiology》1993,103(4):1291-1297
Histone H2A mRNA is selectively expressed in scattered subpopulations of cells in the pea (Pisum sativum) root apical meristem. To study whether this specific expression was associated with the cell cycle, a double-labeling technique was used to identify cells replicating DNA during S phase and those expressing H2A mRNA. Cells in S phase were detected by [3H]thymidine incorporation and autoradiography, whereas cells containing H2A mRNA were identified by in situ hybridization using digoxigenin-labeled probes. Approximately 92% of the [3H]thymidine-labeled S-phase cells expressed H2A mRNA and 85% of cells that expressed H2A mRNA were in S phase. In root tissue located basal to the promeristem, synchronous co-located expression was observed in scattered packets of proliferating cells. Furthermore, neither H2A mRNA nor S-phase cells could be detected within the quiescent center or mature root cap. When DNA synthesis was inhibited with hydroxyurea, a commensurate and specific decrease in steady-state levels of H2A mRNA was found. We conclude that cell-specific expression of pea histone H2A mRNA is replication dependent and that H2A mRNA is transiently accumulated during a period of the cell cycle that mostly overlaps the S phase. We propose that the overlap between H2A expression and S phase could occur if H2A mRNA accumulation began in late G1 and abated in late S.  相似文献   

9.
The addition of human fibroblast interferon (IFN-beta) (100 units/ml) at the S/G2 boundary of the cell cycle of synchronously grown HeLa cells is characterized by the accumulation of newly synthesized low molecular weight DNA and changes in chromatin assembly. In addition, there is a 3-fold stimulation in the incorporation of tracer amounts of [3H]thymidine, but not [3H] deoxyguanosine, into DNA and a 2-fold increase in the incorporation of [3H]dTTP into the DNA of isolated nuclei. Fluorescence-activated cell sorting by laser flow cytometry revealed that IFN-beta-treated cells were delayed in entering and passing through the S phase. The inhibition of proliferation of HeLa cells treated with IFN-beta is characterized by a 3-fold accumulation of newly synthesized DNA of Mr less than 56 X 10(6) compared to untreated cells as determined by alkaline sucrose gradient centrifugation. The newly synthesized DNA in IFN-beta-treated cells was replicative and not repair DNA. The observation that IFN-beta inhibits the processing of newly synthesized low molecular weight DNA into normal DNA might be explained by the intracellular accumulation of S-adenosylhomocysteine in IFN-beta-treated HeLa cells (de Ferra, F., and Baglioni, C. (1983) J. Biol. Chem. 258, 2118-2121) which could change the soluble ribonucleotide and deoxyribonucleotide pool and ultimately affect DNA processing. Interferon may also affect processing of DNA by interfering with normal chromatin assembly. Evidence for the effect of IFN-beta on chromatin assembly is provided; we have observed a more condensed structure in IFN-beta treated cells by circular dichroism spectroscopy. Simultaneous with the affect on chromatin assembly, there is a 70% decrease in poly(ADP-ribosylation) of either histone and/or non-histone proteins. The loss of coordination between the pool size for DNA synthesis, decreased postsynthetic modifications of chromatin, and normal chromatin formation may explain the inability of the cell to differentiate and to continue cell division.  相似文献   

10.
The synthesis of poly(A)-containing RNA by isolated mitochondria from Ehrlich ascites cells was studied. Isolated mitochondria incorporate [3H]AMP or [3H]UTP into an RNA species that adsorbs on oligo (dT)-cellulose columns or Millipore filters. Hydrolysis of the poly(A)-containing RNA with pancreatic and T1 ribonucleases released a poly(A) sequence that had an electrophoretic mobility slightly faster than 4SE. In comparison, ascites-cell cytosolic poly(A)-containing RNA had a poly(A) tail that had an electrophoretic mobility of about 7SE. Sensitivity of the incorporation of [3H]AMP into poly(A)-containing RNA to ethidium bromide and to atractyloside and lack of sensitivity to immobilized ribonuclease added to the mitochondria after incubation indicated that the site of incorporation was mitochondrial. The poly(A)-containing RNA sedimented with a peak of about 18S, with much material of higher s value. After denaturation at 70 degrees C for 5 min the poly(A)-containing RNA separated into two components of 12S and 16S on a 5-20% (w/v) sucrose density gradient at 4 degrees C, or at 4 degrees and 25 degrees C in the presence of formaldehyde. Poly(A)-containing RNA synthesized in the presence of ethidium bromide sedimented at 5-10S in a 15-33% (w/v) sucrose density gradient at 24 degrees C. The poly(A) tail of this RNA was smaller than that synthesized in the absence of ethidium bromide. The size of the poly(A)-containing RNA (approx. 1300 nucleotides) is about the length necessary for that of mRNA species for the products of mitochondrial protein synthesis observed by ourselves and others.  相似文献   

11.
The aim of this study was to define metabolic signaling pathways that mediate DNA synthesis and cell cycle progression in adult rodent islets to devise strategies to enhance survival, growth, and proliferation. Since previous studies indicated that glucose-stimulated activation of mammalian target of rapamycin (mTOR) leads to [3H]thymidine incorporation and that mTOR activation is mediated, in part, through the K(ATP) channel and changes in cytosolic Ca2+, we determined whether glyburide, an inhibitor of K(ATP) channels that stimulates Ca2+ influx, modulates [3H]thymidine incorporation. Glyburide (10-100 nm) at basal glucose stimulated [3H]thymidine incorporation to the same magnitude as elevated glucose and further enhanced the ability of elevated glucose to increase [3H]thymidine incorporation. Diazoxide (250 microm), an activator of KATP channels, paradoxically potentiated glucose-stimulated [3H]thymidine incorporation 2-4-fold above elevated glucose alone. Cell cycle analysis demonstrated that chronic exposure of islets to basal glucose resulted in a typical cell cycle progression pattern that is consistent with a low level of proliferation. In contrast, chronic exposure to elevated glucose or glyburide resulted in progression from G0/G1 to an accumulation in S phase and a reduction in G2/M phase. Rapamycin (100 nm) resulted in an approximately 62% reduction of S phase accumulation. The enhanced [3H]thymidine incorporation with chronic elevated glucose or glyburide therefore appears to be associated with S phase accumulation. Since diazoxide significantly enhanced [3H]thymidine incorporation without altering S phase accumulation under chronic elevated glucose, this increase in DNA synthesis also appears to be primarily related to an arrest in S phase and not cell proliferation.  相似文献   

12.
To determine whether serum immunoglobulin in addition to epidermal growth factor (EGF) augment growth in human thyroid cells, effects of these factors on thyrocytes were tested using IgG derived from 34 patients with Graves' disease and 12 normal subjects. The cell growth was estimated by [3H]-thymidine uptake, cell cycle determined by FACS analysis and the expression of c-fos mRNA in monolayer thyrocytes enzymatically prepared from Graves' thyroid. The addition of IgG taken from patients with Graves' disease inhibited the [3H]-thymidine uptake compared to that taken from control subjects. IgG taken from Graves' disease suppressed EGF-induced increase of S + G2/M phase in cell cycle and the expression of c-fos mRNA, while those taken from normal subjects did not affect at all. [3H]-thymidine uptake was more suppressed by IgG from patients with a smaller-sized goiter than by those with a larger-sized one. There was a negative correlation between the suppression of [3H]-thymidine uptake and levels of TBII (p less than 0.05). There was no correlation between the degree of suppression and the levels of T3, T4, TSAb, TSBAb or MCHA. Thus, in conclusion, IgG derived from sera of Graves' may inhibit the growth of Graves' thyrocytes, leading to the determination of the goiter size.  相似文献   

13.
14.
15.
Poly(A)+RNA is synthesized during the first hours of pollen germination and is rapidly incorporated into polysomal structures. After a 2-h pulse with uracil-14C, 42% of the transcribed fraction of polysomal RNA is polyadenylated. Following 4 h of germination the amount of the newly-made poly(A)+RNA decreases steadily at the rate of about 14% per h, whereas that of rapidly-labelled poly(A)RNA continues to grow. Beginning 1 h of cultivation the ratio of poly(A)/poly(A)+RNA increases exponentially. Similarly as in non-polyadenylated mRNA the main portion of the synthesized polysomal poly(A)+RNA sediments at a rate of 4 to 14 S and its mean size decreases slightly with the time of labelling. RNA isolated from nuclei and cell wall containing pollen tube fraction differed from the polysomal one in higher apeoific radioactivity and the polyadenylated RNA exhibited higher size distribution. The comparison of the results with earlier observations suggests the involvement of poly(A)in mRNA translation in pollen tubes.  相似文献   

16.
Cell cycle variations in the modification of histones and nonhistones by ADPribosylation were investigated. Proteins of HeLa interphase nuclei and metaphase chromosomes were radioactively labeled in vivo with [3H]adenosine. Histones of metaphase chromosomes were extensively modified by ADPribosylation, with H2B, H2A and H4 being predominant acceptors of [3H]adenosine label. For histones of interphase nuclei from synchronized cells, the highest level of 3H labeling was observed by two-dimensional gel electrophoresis to occur in S phase. The minimum level was noted in G1 phase. ADPribosylation of histones is, however, significant during all phases of the cell cycle. These conclusions were confirmed by experiments using [32P]NAD. The results with the specific inhibitor of ADPribosylation, 3-aminobenzamide, and with snake venom phosphodiesterase indicated that the radioactive isotopes were incorporated as ADPribose. Two-dimensional gels of HeLa nonhistones labeled with [3H]adenosine showed strikingly different patterns for interphase and metaphase samples. Over 100 ADPribosylated species were found for interphase nuclei, but poly(ADPribose) polymerase was the only major acceptor for metaphase chromosomes. A simple pattern was also revealed for nuclear scaffolds, with the 'lamins' and poly(ADPribose) polymerase being identifiable as modified species.  相似文献   

17.
3,5,3'-Triiodo-L-thyronine (T3) regulates the growth rate and GH production of cultured GC cells, a rat pituitary tumor cell line. We have previously demonstrated a parallel increase in cellular content of DNA and nuclear T3 and glucocorticoid receptors during the DNA synthesis (S) phase of the GC cell growth cycle. To determine the relationship between the increase in nuclear hormone receptors and GH production in S-phase cultures, we measured the synthesis rate of GH by pulse-labeling with [3H]leucine and immunoprecipitation as well as the relative concentration of GH mRNA by dot hybridization employing formaldehyde-treated cytoplasm and GH cDNA. Total protein synthesis was similar in S-phase and asynchronous cultures. However, in comparison to asynchronous cultures, S-phase cells had an increased GH synthesis rate, p less than 0.005 (from 13,430 +/- 609 to 19,150 +/- 1160 cpm/10(6) cells/2 h) and increased GH mRNA, p less than 0.001 (from 7.2 +/- 1.2 to 14.5 +/- 1.5 relative A units). The S-phase-associated augmentation in GH production did not appear to result from a decrease in ADP-ribosylation induced by 2 mM thymidine treatment which was utilized for the S-phase synchronization. To determine whether increased GH mRNA and GH synthesis in S-phase was associated with an increase in synthesis of GH mRNA, we measured the incorporation of [3H]uridine into GH mRNA by incubating partially synchronized S-phase cells with [3H]uridine and isolating 3H-labeled GH mRNA by hybridization to GH cDNA immobilized on nitrocellulose filters. Total RNA synthesis was similar in asynchronous, S-phase and G1 cell populations. However, the mean incorporation of [3H]uridine into GH mRNA of S-phase cultures was decreased to 52, 59, and 61% (counts/min of GH mRNA/10(6) cells), 49, 59, and 65% (ppm of total RNA), and 64 and 69% (ppm of poly(A)+ RNA) of asynchronous cultures. Our studies show further that the decrease in [3H]uridine incorporation into GH mRNA did not result from a cell cycle specific change in efficiency of hybridization or exclusively to an S-phase associated increased rate of degradation of GH mRNA. Thus, despite increased nuclear T3 and glucocorticoid receptors and, increased GH mRNA and GH synthesis, the synthesis rate of GH mRNA appears decreased in S-phase GC cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
BalB/C-3T3 mouse fibroblasts and a temperature-sensitive derivative, ts 2e, were transfected by the calcium phosphatedimethyl sulphoxide procedure to examine the effect of this manipulation on cell cycle progression. Cells were synchronized by growth to confluence in the presence of [2-14C]thymidine to generally label cellular DNA, and then subcultured from the G0 state. Plasmid pSV3-neo or pSV2-neo DNA was added to cells at 24 h post-plating, at peak S phase. At designated intervals prior to, during, and after the transfection procedure, cells were labelled with [methyl-3H]thymidine for 1 h to monitor nascent DNA synthesis and thereby assess cell cycle position. In all experiments performed, irrespective of the time of DNA addition, the transfection manipulations resulted in a reproducible, transient interruption of cell cycle progression, of about 5 h, and manifested as a delay in movement across the subsequent G1-S interface. Thereafter, the cycle resumed normally. The results indicated that the temporal sequence of the cell duplication cycle is altered when cells are exposed to exogenous DNA:Ca3 (PO4)2.  相似文献   

19.
20.
Immunosuppression in mice bearing plasma cell tumors (PC-mice) provides a model system for the study of negative B cell regulation. Our previous studies demonstrated that B cell proliferation is suppressed in these mice by a cascade of interactions involving macrophages and soluble factors. The present report pinpoints the G1 phase of the cell cycle as the stage of B cell proliferation inhibited in PC-mice. Modulation of surface immunoglobulin (sIg) with anti-mu, an early membrane activation event, occurred normally on B cells from the spleens of PC-mice. However, examination of the size profile and the expression of sIgD and sIgM on B cells from the spleens of PC-mice showed an accumulation of large-sized, low intensity sIgD+ cells, suggesting a block in B cell activation in the late G1 phase of the cell cycle. This was confirmed by experiments in vitro that demonstrated that although LPS-stimulated B cells from the spleens of PC-mice enlarged to a size characteristic of G1 phase, most did not additionally enlarge into S phase even after 3 days of culture, nor did they incorporate significant amounts of [3H]thymidine. Additional confirmation of a block in late G1 was obtained by using analysis of [3H]thymidine incorporation, cell size, and cell cycle after normal cells were cultured in supernatants from cloned PC lines containing the factor(s) that initiates the cascade of events leading to suppression of B cell proliferation. The relevance of these findings to PC-induced immunosuppression and to the regulation of normal B cell proliferation during the G1 phase of the cell cycle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号