首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined effects of human rTNF alpha on the synthesis of glycosaminoglycan and DNA in cultured rat costal chondrocytes. The effects of human recombinant IL-1 alpha and IL-1 beta were also given attention. rTNF alpha, as well as rIL-1 alpha and rIL-1 beta, decreased the incorporation of [35S]sulfate into glycosaminoglycan to about 10% of the levels in the control. The half-maximal doses of rTNF alpha, rIL-1 alpha or rIL-1 beta required for the suppression of glycosaminoglycan synthesis (by rTNF alpha, rIL-1 alpha, and rIL-1 beta) were 2 ng/ml, 30 ng/ml, or 5 ng/ml, respectively. rTNF alpha stimulated incorporation of [3H]thymidine in the chondrocytes in a dose- and time-dependent manner. DNA synthesis was increased to about threefold over the control cultures in the presence of 1 microgram/ml rTNF alpha for 72 hr. The stimulatory effect of rTNF alpha on DNA synthesis was observed in both subconfluent and confluent cultures, whereas rIL-1 alpha and rIL-1 beta had no stimulatory activity on DNA synthesis. The addition of rTNF alpha to the cultures of chondrocytes stimulated DNA synthesis, even in medium containing no fetal calf serum. The fetal calf serum acted synergistically with rTNF alpha in increasing DNA synthesis. We propose that both TNF and IL-1 may be involved in inflammatory diseases of cartilage, and that TNF alpha, but not IL-1, may have some physiologic growth factor function for chondrocytes.  相似文献   

2.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

3.
Human recombinant tumor necrosis factor-alpha (rTNF alpha) alone (up to 1000 units/ml) did not alter either basal or human chorionic gonadotropin (hCG)-induced testosterone formation in primary culture of rat Leydig cells. However, concomitant addition of rTNF alpha with human recombinant interleukin-1 beta (rIL-1 beta) enhanced the inhibitory effects of rIL-1 beta. The rIL-1 beta dose response curve was shifted to the left (IC50 changed from 1 ng/ml to 0.3 ng/ml). Even though rTNF alpha had no effect on testosterone formation, hCG-stimulated cyclic AMP formation was inhibited by rTNF alpha in a dose dependent manner. In the presence of both rTNF alpha and rIL-1 beta, hCG-induced cyclic AMP formation and binding of [125I]-hCG to Leydig cells were further inhibited. Testicular macrophages represent about 20% of the interstitial cells. TNF alpha and IL-1 may be produced locally by interstitial macrophages and have paracrine effects on Leydig cell function.  相似文献   

4.
Insulin-dependent diabetes mellitus is characterized by progressive autoimmune destruction of pancreatic Beta cells mediated by ill-defined effector mechanisms. Experimental data suggest that cytokines, e.g. interleukin 1 and tumor necrosis factor, could play a fundamental role. The aim of this study was to analyze the effect of recombinant IL-1 beta (rIL-1 beta) on both islet functional capacity and morphology, using long-term cultures and various glucose concentrations. Islet cultured with 1 g/l (5.5 mmol/l) glucose maintained normal insulin- secretion and morphology for more than two months. In contrast, islets cultured with 2 g/l (11 mmol/l) glucose showed an altered insulin secretion and a shorter survival (40 days). At 11 g/l (60 mmol/l) glucose, islets died by 2 weeks of culture. rIL-1 beta exerted a cytotoxic effect on islet cells only when added to cultures containing supraphysiological glucose concentrations. But, in the presence of 1 g/l glucose, the addition of rIL-1 beta (40 ng/ml) for prolonged periods (14 days), did not alter islet function. Our results suggest that in auto-immune type I diabetes, IL-1 beta represents an aggravating factor in lesion formation more than a primary pathogenic mechanism.  相似文献   

5.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

6.
Interleukin-18 (IL-18) mRNA is expressed in islets of NOD mice during the early stages of insulitis and IL-18 has therefore been implicated as a contributing factor in immune-mediated beta-cell destruction. However, a recent study failed to show any effect of human IL-18 on the function of isolated rat islets. Since species differences have been shown between human and murine IL-18, the aims of this study were to investigate 1) if species homologous IL-18 alone or following IL-12 pre-exposure affected rat islet function, 2) if IL-18 dose-dependently modulated IL-1 beta or interferon-gamma (IFN-gamma) + tumor necrosis factor-alpha (TNF-alpha) actions on islet function, and 3) if IL-18 and IL-18 receptor (IL-18R) were expressed in rat islet beta-cells. Insulin release and nitric oxide (NO) production from isolated rat islets were measured after incubation with or without cytokines. RT-PCR was used to quantitate mRNA expression of IL-18 and the IL-18R signaling chain (IL-18R beta). There were no significant effects of 0.625-10 nM recombinant murine (rm) IL-18 alone on accumulated or glucose-challenged insulin release or NO production after 24 hours. Fifteen pg/ml of recombinant human (rh) IL-1 beta as well as 200 U/ml recombinant rat (rr) IFN-gamma + 250 U/ml rhTNF-alpha significantly increased islet NO production and inhibited both accumulated and glucose-challenged islet insulin release. However, rmIL-18 failed to modulate these effects of IL-1 beta or IFN-gamma + TNF-alpha. Although IL-12 induces IL-18R expression in Th1 and B lymphocytes, 24-hours rmIL-12 preincubation neither sensitized islets to effects of 10 nM of rm or rrIL-18 alone nor primed the islets to IL-1 beta actions on insulin release and NO production. IL-18R beta mRNA, which was expressed in human peripheral blood mononuclear cells (PBMC), was not expressed in rat insulinoma (RIN) cells or in isolated rat islets, even after exposure to IL-1 beta and/or IFN-gamma + TNF-alpha or IL-12. IL-18 mRNA was constitutively expressed in RIN cells, in FACS-purified rat beta-cells and in intact rat and mouse islets, and was up-regulated by IFN-gamma in an interferon regulatory factor-1- IRF-1) and NO - independent manner. However, IL-18 protein was undetectable in lysates and supernates of RIN cells by ECL, Western blotting and immunoprecipitation. In conclusion, we show for the first time that IL-18 but not IL-18R is expressed in rodent islet beta-cells. The physiological importance and pathological role of IL-18 originating from islet beta-cells deserve further investigation.  相似文献   

7.
Nesfatin-1 is a novel anorexigenic regulatory peptide. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is expressed in brain areas regulating feeding. Outside the brain, nesfatin-1 expression has been reported in adipocytes, gastric endocrine cells and islet cells. We studied NUCB2 expression in human and rodent islets using immunocytochemistry, in situ hybridization and western blot. Furthermore, we investigated the potential influence of nesfatin-1 on secretion of insulin and glucagon in vitro and in vivo in mice and in INS-1 (832/13) cells. The impact of type 2 diabetes (T2D) and glucolipotoxicity on NUCB2 gene expression in human islets and its relationship to insulin secretory capacity and islet gene expression was studied using microarray. Nesfatin-1 immunoreactivity (IR) was abundant in human and rodent beta cells but absent in alpha, delta, PP and ghrelin cells. Importantly, in situ hybridization showed that NUCB2 mRNA is expressed in human and rat islets. Western blot analysis showed that nesfatin-1 IR represented full length NUCB2 in rodent islets. Human islet NUCB2 mRNA was reduced in T2D subjects but upregulated after culture in glucolipotoxic conditions. Furthermore, a positive correlation between NUCB2 and glucagon and insulin gene expression, as well as insulin secretory capacity, was evident. Nesfatin-1 enhanced glucagon secretion but had no effect on insulin secretion from mouse islets or INS-1 (832/13) cells. On the other hand, nesfatin-1 caused a small increase in insulin secretion and reduced glucose during IVGTT in mice. We conclude that nesfatin-1 is a novel glucagon-stimulatory peptide expressed in the beta cell and that its expression is decreased in T2D islets.  相似文献   

8.
9.
Cytokine-induced damage may contribute to destruction of insulin-secreting beta-cells in islets of Langerhans during autoimmune diabetes. There is considerable controversy (i) whether human and rat islets respond differently to cytokines, (ii) the extent to which cytokine damage is mediated by induction of nitric oxide formation, and (iii) whether the effects of nitric oxide on islets can be distinguished from those of reactive oxygen species or peroxynitrite. We have analyzed rat and human islet responses in parallel, 48 h after exposure to the nitric oxide donor S-nitrosoglutathione, the mixed donor 3-morpholinosydnonimine, hypoxanthine/xanthine oxidase, peroxynitrite, and combined cytokines (interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma). Insulin secretory response to glucose, insulin content, DNA strand breakage, and early-to-late stage apoptosis were recorded in each experiment. Rat islet insulin secretion was reduced by S-nitrosoglutathione or combined cytokines, but unexpectedly increased by peroxynitrite or hypoxanthine/xanthine oxidase. Effects on human islet insulin secretion were small; cytokines and S-nitrosoglutathione decreased insulin content. Both rat and human islets showed significant and similar levels of DNA damage following all treatments. Apoptosis in neonatal rat islets was increased by every treatment, but was at a low rate in adult rat or human islets and only achieved significance with cytokine treatment of human islets. All cytokine responses were blocked by an arginine analogue. We conclude: (i) Reactive oxygen species increased and nitric oxide decreased insulin secretory responsiveness in rat islets. (ii) Species differences lie mainly in responses to cytokines, applied at a lower dose and shorter time than in most studies of human islets. (iii) Cytokine effects were nitric oxide driven; neither reactive oxygen species nor peroxynitrite reproduced cytokine effects. (iv) Rat and human islets showed equal susceptibility to DNA damage. (v) Apoptosis was not the preferred death pathway in adult islets. (vi) We have found no evidence of human donor variation in the pattern of response to these treatments.  相似文献   

10.
Nitric oxide synthase, induced by cytokines in insulin-containing cells, produces nitric oxide which inhibits function and may promote cell killing. Since glucagon was shown to prevent inducible nitric oxide synthase (iNOS) expression in rat hepatocytes it was of interest to examine the action of glucagon (and cyclic AMP) on iNOS induction in insulin-producing cells. Cultured RIN5F cells and primary rat and human islets of Langerhans were treated with interleukin 1beta (IL-1beta) or a combination of cytokines, and were co-treated or pre-treated with glucagon. In RIN5F cells, the activity of iNOS induced by IL-1beta (10 pM, 24 h), was significantly reduced by glucagon (1000 nM), which raises cyclic AMP, and by forskolin (1-10 microM), a non specific activator of adenylate cyclase. Glucagon and forskolin also decreased iNOS expression in RIN5F cells, and rat and human islets, as shown by Western blotting. The inhibitory action of IL-1beta (100 pM, 24 h) on rat islet insulin secretion was partially reversed by 1-h pre-treatment with glucagon (10-1000 nM), while the contrasting stimulatory effect of 48-h treatment with cytokines on insulin secretion from human islets was similarly prevented by glucagon (1000 nM) pre-treatment. These results suggest that glucagon inhibits iNOS expression in insulin-containing cells and imply that glucagon could modulate the inhibitory effects of cytokines.  相似文献   

11.
12.
D M Xiao  L Levine 《Prostaglandins》1986,32(5):709-718
Recombinant human interleukin-l (rIL-1) alpha and beta, which have 26% homology in their amino acid sequence, stimulated arachidonic acid metabolism by squirrel monkey smooth muscle cells and rat liver cells; their relative effectiveness, however, varied with the two cells. Recombinant IL-1 alpha was 3 times more effective than rIL-1 beta at stimulating arachidonic acid metabolism by the primate smooth muscle cells. Recombinant IL-1 alpha was 3 times less effective than rIL-1 beta when measured by their capacity to synergistically stimulate arachidonic acid metabolism of rat liver cells in the presence of palytoxin and anti-diuretic hormone (ADH). The rIL-1 alpha and rIL-1 beta also stimulated the release of radiolabelled arachidonic acid from the smooth muscle cells prelabelled with [3H]arachidonic acid. The two recombinant IL-1s have different heat stabilities, again when measured by their capacity to stimulate arachidonic acid metabolism; IL-1 alpha was more heat stable than IL-1 beta.  相似文献   

13.
Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of [35S]sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and [3H]leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor (heparin-like) activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation.  相似文献   

14.
15.
In this study, we have established a new strategy increasing human islet longevity utilizing allogeneic whole bone marrow (BM) co-cultured with human islets. The cultured islets' function and survival have been evaluated by analysis of insulin secretion in response to high-glucose-challenge, morphological evaluation of cell growth. Human islet only culture failed to reveal evidence of long term survival, growth or function in terms of insulin release or insulin response to glucose challenge. These results indicate that BM increases islet survival and function with the eventual formation of pancreatic endocrine tissue capable of sustaining beta cell fuction.  相似文献   

16.
Preexposure of resident mouse peritoneal macrophages for 1 hr to traces of bacterial lipopolysaccharide (LPS) (less than or equal to 1 ng/ml) rendered the cells refractory to activation by recombinant interferon-gamma (rIFN gamma) or recombinant tumor necrosis factor-alpha (rTNF alpha), as evaluated by release of H2O2 upon stimulation with phorbol myristate acetate. Inhibition persisted for at least 4 days. Fifty percent inhibition of activation mediated by rIFN gamma followed 1 hr exposure to 10 pg/ml LPS. Fifty percent inhibition of activation mediated by rTNF alpha was achieved with 1 hr exposure to 1 pg/ml LPS. Such low levels LPS exposures (concentration X time) are far below those reported for many other actions of LPS on host cells. Inhibition was partially prevented by the cyclooxygenase inhibitors indomethacin, ibuprofen, and acetylsalicylic acid. Exogenous prostaglandins PGE1 and PGE2, and the 3',5'-cyclic adenosine monophosphate analog dibutyryl cyclic adenosine monophosphate (cAMP), mimicked the inhibitory effect of LPS in a dose-dependent manner, consistent with the hypothesis that formation of endogenous cyclooxygenase products in response to LPS may elevate intracellular cAMP and that the latter may mediate the observed inhibition. In addition, neutralizing antibody against IFN alpha and IFN beta selectively prevented LPS inhibition of activation mediated by rIFN gamma, but not by rTNF alpha. This suggests that IFN alpha and/or IFN beta induced by LPS also contributed to inhibition of activation by rIFN gamma. Thus, release of LPS may afford microorganisms a means by which to interfere with immunologically mediated enhancement of the respiratory burst-dependent antimicrobial capacity of macrophages.  相似文献   

17.
Islets from patients with type 2 diabetes exhibit β cell dysfunction, amyloid deposition, macrophage infiltration, and increased expression of proinflammatory cytokines and chemokines. We sought to determine whether human islet amyloid polypeptide (hIAPP), the main component of islet amyloid, might contribute to islet inflammation by recruiting and activating macrophages. Early aggregates of hIAPP, but not nonamyloidogenic rodent islet amyloid polypeptide, caused release of CCL2 and CXCL1 by islets and induced secretion of TNF-α, IL-1α, IL-1β, CCL2, CCL3, CXCL1, CXCL2, and CXCL10 by C57BL/6 bone marrow-derived macrophages. hIAPP-induced TNF-α secretion was markedly diminished in MyD88-, but not TLR2- or TLR4-deficient macrophages, and in cells treated with the IL-1R antagonist (IL-1Ra) anakinra. To determine the significance of IL-1 signaling in hIAPP-induced pancreatic islet dysfunction, islets from wild-type or hIAPP-expressing transgenic mice were transplanted into diabetic NOD/SCID recipients implanted with mini-osmotic pumps containing IL-1Ra (50 mg/kg/d) or saline. IL-1Ra significantly improved the impairment in glucose tolerance observed in recipients of transgenic grafts 8 wk following transplantation. Islet grafts expressing hIAPP contained amyloid deposits in close association with F4/80-expressing macrophages. Transgenic grafts contained 50% more macrophages than wild-type grafts, an effect that was inhibited by IL-1Ra. Our results suggest that hIAPP-induced islet chemokine secretion promotes macrophage recruitment and that IL-1R/MyD88, but not TLR2 or TLR4 signaling is required for maximal macrophage responsiveness to prefibrillar hIAPP. These data raise the possibility that islet amyloid-induced inflammation contributes to β cell dysfunction in type 2 diabetes and islet transplantation.  相似文献   

18.
Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. As mesenchymal stem cells (MSCs) possess numerous immunoregulatory properties, we hypothesized that MSCs could protect human islets from pro-inflammatory cytokines. Five hundred human islets were co-cultured with 0.5 or 1.0 × 10(6) human MSCs derived from bone marrow or pancreas for 24 hours followed by 48 hour exposure to interferon-γ, tumor necrosis factor-α and interleukin 1β. Controls include islets cultured alone (± cytokines) and with human dermal fibroblasts (± cytokines). For all conditions, glucose stimulated insulin secretion (GSIS), total islet cellular insulin content, islet β cell apoptosis, and potential cytoprotective factors secreted in the culture media were determined. Cytokine exposure disrupted human islet GSIS based on stimulation index and percentage insulin secretion. Conversely, culture with 1.0 × 10(6) bMSCs preserved GSIS from cytokine treated islets. Protective effects were not observed with fibroblasts, indicating that preservation of human islet GSIS after exposure to pro-inflammatory cytokines is MSC dependent. Islet β cell apoptosis was observed in the presence of cytokines; however, culture of bMSCs with islets prevented β cell apoptosis after cytokine treatment. Hepatocyte growth factor (HGF) as well as matrix metalloproteinases 2 and 9 were also identified as putative secreted cytoprotective factors; however, other secreted factors likely play a role in protection. This study, therefore, demonstrates that MSCs may be beneficial for islet engraftment by promoting cell survival and reduced inflammation.  相似文献   

19.
Neovascularization, a common occurrence in chronic inflammatory lesions, requires endothelial cell (EC) proliferation. Because this form of inflammation is often mediated by immunologically generated cytokines, the effects of such cytokines on human umbilical vein EC proliferation in vitro were investigated. Low concentrations of recombinant interferon gamma (rIFN-gamma) (10-100 U/ml), but not a higher concentration (1,000 U/ml), enhanced both basal and endothelial cell growth factor (ECGF)-stimulated EC proliferation. Recombinant interleukin 1 (rIL-1) and recombinant tumor necrosis factor-alpha (rTNF) had minor effects on basal EC proliferation, but significant inhibition was observed in the presence of ECGF. A combination of rIFN-gamma and rTNF induced marked suppression of EC proliferation, which appeared to be due to a cytotoxic effect on the EC, as demonstrated by 51Cr release. In contrast, the combination of rIFN-gamma and rIL-1 had only an additive effect on EC proliferation, with no evidence of cytotoxicity. These results suggest that cytokines have important regulatory roles in local vascular proliferation. These effects varied not only with the individual cytokine, but also with the combination of cytokines used. The most striking effects were 1) the stimulation of proliferation by IFN-gamma at a low concentration and 2) the inhibition by both rIL-1 and rTNF of ECGF-stimulated proliferation.  相似文献   

20.
Summary During interaction with autologous tumor cells large granular lymphocytes (LGL) of cancer patients released a soluble cytotoxic factor, termed LGL-derived cytotoxic factor, which mediated lysing of autologous fresh tumor cells. The cytotoxic factor was compared with purified human recombinant cytotoxic cytokines, including tumor necrosis factor (TNF), lymphotoxin (LT), interferon (IFN) , IFN, interleukin-1 (IL-1) and IL-2. The LGL cytotoxic factor exhibited cytotoxicity against autologous and allogeneic fresh human tumor cells in an 18-h51Cr-release assay, while these target cells were resistant to lysing by any of the recombinant cytokines. Mixtures of recombinant(r) TNF, rLT, rIFN, rIFN, rIL-1 and rIL-2 were still unable to produce cytotoxic effects on fresh human tumor cells. Treatment with monoclonal and polyclonal antibodies directed against rTNF, rLT, rIFN, rIFN, or rIL-1 did not inhibit the cytotoxic activity of LGL-derived cytotoxic factor against fresh human tumor cells. Even a mixture of all the antibodies was incapable of blocking the cytolytic activity of the factor to fresh human tumor cells. Furthermore, intact LGL-mediated lysing of autologous tumor cells was not inhibited by any of the antibodies. These results may indicate that a cytotoxic factor produced by LGL in response to autologous tumor cells mediates lysing of fresh human tumor cells independently of TNF, LT, IFN, IL-1 and IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号