首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Introduction  

Certain amino acids within proteins have been reported to change from the L form to the D form over time. This process is known as racemization and is most likely to occur in long-lived low-turnover tissues such as normal cartilage. We hypothesized that diseased tissue, as found in an osteoarthritic (OA) joint, would have increased turnover reflected by a decrease in the racemized amino acid content.  相似文献   

2.
Abnormalities of calcium homeostasis are involved in the process of cell injuries such as Duchenne muscular dystrophy characterized by the absence of the protein dystrophin. But how the absence of dystrophin leads to cytosolic calcium overload is as yet poorly understood. This question has been addressed with skeletal muscle cells from human DMD muscles or mdx mice. Although easier to obtain than human muscles, mdx muscle cells have provided controversial data concerning the resting intracellular calcium level ([Ca2+](i)). This work describes the culture of Sol8 cell line that expresses neither dystrophin nor adhalin, a dystrophin-associated protein. The [Ca2+](i)and intracellular calcium transients induced by different stimuli (acetylcholine, caffeine and high potassium) are normal during the first days of culture. At later stages, calcium homeostasis exhibits drastic alterations with a breaking down of the calcium responses and a large [Ca2+](i)elevation. Concomitantly, Sol8 cells exhibit morphological signs of cell death like cytoplasmic shrinkage and incorporation of propidium iodide. Cell death could be significantly reduced by blocking the activity of calpains, a type of calcium-regulated proteases. These results suggest that Sol8 cell line provides an alternative model of dystrophin-deficient skeletal muscle cells for which a clear disturbance of the calcium homeostasis is observed in culture in association with calpain-dependent cell death. It is shown that transfection with a plasmid cDNA permits the forced expression of dystrophin in Sol8 myotubes as well as a correct sorting of the protein. This approach could be used to explore possible interactions between dystrophin deficiency, calcium homeostasis alteration, and dystrophic cell death.  相似文献   

3.
Summary. Although calcium carbonate is known to be a common biomineral in plants, very little attention has been given to the biological control of calcium carbonate deposition. In mulberry leaves, a subcellular structure is involved in mineral deposition and is described here by a variety of cytological techniques. Calcium carbonate was deposited in large, rounded idioblast cells located in the upper epidermal layer of mulberry leaves. Next to the outmost region (“cap”) of young idioblasts, we found that the inner cell wall layer expanded to form a peculiar outgrowth, named cell wall sac in this report. This sac grew and eventually occupied the entire apoplastic space of the idioblast. Inside the mature cell wall sac, various cellulosic membranes developed and became the major site of Ca carbonate deposition. Concentrated Ca2+ was pooled in the peripheral zone, where small Ca carbonate globules were present in large numbers. Large globules were tightly packed among multiple membranes in the central zone, especially in compartments formed by cellulosic membranes and in their neighboring membranes. The maximum Ca sink capacity of a single cell wall sac was quantified using enzymatically isolated idioblasts as approximately 48 ng. The newly formed outgrowth in idioblasts is not a pure calcareous body but a complex cell wall structure filled with substantial amounts of Ca carbonate crystals. Correspondence and reprints: Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.  相似文献   

4.
This study investigated the role of the material properties assumed for articular cartilage, meniscus and meniscal attachments on the fit of a finite element model (FEM) to experimental data for meniscal motion and deformation due to an anterior tibial loading of 45 N in the anterior cruciate ligament-deficient knee. Taguchi style L18 orthogonal arrays were used to identify the most significant factors for further examination. A central composite design was then employed to develop a mathematical model for predicting the fit of the FEM to the experimental data as a function of the material properties and to identify the material property selections that optimize the fit. The cartilage was modeled as isotropic elastic material, the meniscus was modeled as transversely isotropic elastic material, and meniscal horn and the peripheral attachments were modeled as noncompressive and nonlinear in tension spring elements. The ability of the FEM to reproduce the experimentally measured meniscal motion and deformation was most strongly dependent on the initial strain of the meniscal horn attachments (epsilon(1H)), the linear modulus of the meniscal peripheral attachments (E(P)) and the ratio of meniscal moduli in the circumferential and transverse directions (E(theta)E(R)). Our study also successfully identified values for these critical material properties (epsilon(1H) = -5%, E(P) = 5.6 MPa, E(theta)E(R) = 20) to minimize the error in the FEM analysis of experimental results. This study illustrates the most important material properties for future experimental studies, and suggests that modeling work of meniscus, while retaining transverse isotropy, should also focus on the potential influence of nonlinear properties and inhomogeneity.  相似文献   

5.
Summary The concentration of Ca++ in culture media profoundly affected the growth and differentiation properties of normal human mammary epithelial cells in short-term culture. In media where Ca++ was above 0.06 mM, longevity was limited to an average of three to four cell divisions. The extended growth fraction (those cells able, to divide more than once) was only approximately 50% and diminished to zero quickly with time. Stationary cells inhibited from dividing appeared differentiated in the formation of lipid vacuoles and accumulation of α-lactalbumin. Growth of stationary cultures could be reinstituted in about half the cells, either by disruption and transfer or by a reduction in Ca++ to less than 0.08 mM. The reduction of Ca++ to levels below 0.08 mM extended the longevity of normal cells to eight to nine divisions. The extended growth fraction was 100%. Under these conditions, cells did not differentiate. The effects of Ca++ on growth and differentiation were specific (Mg++ and Mn++ variations were without effect) and reversible and in many respects resembled Ca++ effects on epidermal cells. One major difference is that the dual pathways of growth and differentiation in mammary cells were controlled by glucocorticoid and insulin. Based on the kinetics of the reversible Ca++-induced coupling and uncoupling of proliferation and the program of differentiation, we propose that Ca++ may be an essential trigger for cell divisions that commit a mammary cell to differentiate progressively in a permissive hormonal milieu. This study was supported by grants NIH-CA18175 and CA36399 and an institutional grant from the United Foundation of Greater Detroit.  相似文献   

6.
We report an in vitro model of the adult central nervous system produced by culturing primary brain cells isolated from adult mice for periods longer than 4 months. We applied this novel cell culture method to model progressive neurodegenerative diseases. After long-term culture of adult primary brain cells prepared from Alzheimer’s disease and prion disease mouse models, we observed β-amyloid deposition and prion infection in primary cell cultures in vitro.  相似文献   

7.
Menisci play a crucial role in weight distribution, load bearing, shock absorption, lubrication, and nutrition of articular cartilage within the knee joint. Damage to the meniscus typically does not heal spontaneously due to its partial avascular nature. Partial or complete meniscectomy is a common clinical treatment of the defective meniscus. However, this procedure ultimately leads to osteoarthritis due to increased mechanical stress to the articular cartilage. Meniscus tissue engineering offers a promising solution for partial or complete meniscus deficiency. Mesenchymal stem cells (MSC) have the potential to differentiate into meniscal fibrochondrocyte as well as deliver trophic effects to the differentiated cells. This study tested the feasibility of using MSC co-cultured with mature meniscal cells (MC) for meniscus tissue engineering. Structured cell pellets were created using MC and MSC at varying ratios (100:0, 75:25, 50:50, 25:75, and 0:100) and cultured with or without transforming growth factor-beta 3 supplemented chondrogenic media for 21 days. The meniscal and hypertrophic gene expression, gross appearance and structure of the pellets, meniscus extracellular matrix (ECM), histology and immunohistochemistry of proteoglycan and collagen were evaluated. Co-culture of MC with MSC at 75:25 demonstrated highest levels of collagen type I and glycosaminoglycans (GAG) production, as well as the lowest levels of hypertrophic genes, such as COL10A1 and MMP13. All co-culture conditions showed better meniscus ECM production and hypertrophic inhibition as compared to MSC culture alone. The collagen fiber bundles observed in the co-cultures are important to produce heterogenic ECM structure of meniscus. In conclusion, co-culturing MC and MSC is a feasible and efficient approach to engineer meniscus tissue with enhanced ECM production without hypertrophy.  相似文献   

8.
Calcium deposition in the myxomycete Didymium squamulosum   总被引:1,自引:0,他引:1  
  相似文献   

9.
Telomerase-transduced osteoarthritic fibroblast-like synoviocyte cell line   总被引:5,自引:0,他引:5  
To examine whether the life span of fibroblast-like synoviocytes (FLSs) can be extended and to establish FLS cell lines that preserve the characteristics of primary FLSs, we introduced human catalytic subunit of telomerase (hTERT) gene into human osteoarthritic (OA) FLSs. Two hTERT-transduced clonal cell lines were established and one line, hTERT-OA FLS 13A, was characterized. The hTERT-OA FLS 13A cells have a morphology similar to that of the parental untransduced cells and a population-doubling time similar to that of the parental cells of early passages. While the parental untransduced OA FLSs reached senescence after 100 days in culture, the hTERT-OA FLS 13A cells continued to grow at a population-doubling rate of once in about every 2-3 days. The hTERT-OA 13A cells have so far grown in culture beyond 450 days and maintained the same growth rate. Furthermore, the hTERT-OA FLS 13A cells preserved their sensitivity and response to the treatment with basic calcium phosphate crystals and interleukin-1beta. In conclusion, exogenous expression of telomerase represents a way to extend the life span of human FLSs and telomerase-transduced FLS cells offer a promising tool for gene regulation, cell-based assay, cell transplantation-based gene therapy, and tissue engineering research and development.  相似文献   

10.

Background  

The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β).  相似文献   

11.
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.  相似文献   

12.
R J Webber  A J Hough 《Biochimie》1988,70(2):193-204
Rabbit meniscal fibrochondrocytes were grown in vitro under culture conditions previously shown to foster growth of this cell type. Regardless of the culture regimen employed, the cells synthesized sulfated proteoglycans which could be differentiated by their solubility when dialyzed against water. The water soluble proteoglycans (WSPG) were monomeric in nature and could be separated into sub-types based on their hydrodynamic size when analyzed by gel-filtration chromatography. The water insoluble proteoglycans (WIPG) appeared to represent hyaluronic acid-dependent aggregates of the larger of the two WSPG. The proteoglycans contained approximately 87% chondroitin sulfate and 5% dermatan sulfate. Keratan sulfate could not be detected. Addition of ascorbate to the culture medium did not change the amount or the hydrodynamic size of the proteoglycan aggregates but did alter the quantity of the larger WSPG monomer synthesized depending upon the culture regimen used. Thus, these cells are capable of expressing their differentiated phenotype in short-term monolayer cell culture.  相似文献   

13.
We utilized a technique, previously used to study myocardial cells (G. A. Langer, J. S. Frank, and L. M. Nudd, 1979, Amer. J. Physiol. 237, H239-H246), to study 45Ca2+ isotope exchange kinetics in hepatocyte monolayers, cultured on scintillation disks, and perfused in a flow-through chamber. Isolated rat hepatocytes were plated directly on Primaria-coated disks impregnated with scintillation fluors which made up the walls of the perfusion chamber. Following the labeling of the cells with radioactive calcium (45Ca2+), to apparent asymptote, the washout of 45Ca2+ from the cells was measured. A large very fast turnover compartment, as well as small fast and slow turnover compartments, were identified in each experiment. Surface calcium (Ca2+) was determined by its displacement with 1 mM La3+ after asymptote had been reached during 45Ca2+ labeling (1.59 mmol Ca2+/kg dry wt). The rate constant for this compartment was faster than the washout of the chamber (greater than 3.4 min-1 with a t1/2 less than 12 s). The rate constants for the fast and slow exchangeable compartments were 0.11 min-1 (t1/2 = 6.5 min) and 0.013 min-1 (t1/2 = 56 min), respectively. The fast compartment contained 0.40 mmol Ca2+/kg dry wt and the slow compartment contained 0.27 mmol Ca2+/kg dry wt. Neither the fast nor the slow compartment was lanthanum displaceable. Release of 45Ca2+ in response to 100 microM phenylephrine, 10 nM angiotensin II, and 100-microM 2,5-ditert-butyl hydroquinone was measured during the washout phase. Ca2+ released by these compounds was determined to be 0.50 mmol 0.44, and 0.43 mmol Ca2+/kg dry cell wt, respectively. These agents had an effect only during the washout of the fast compartment. In conclusion, this novel technique of on-line measurement of 45Ca2+ exchange in hepatocyte monolayers identified three exchangeable compartments: (1) a very rapidly exchangeable surface compartment, (2) a fast "microsomal" hormone-releasable compartment, and (3) a slow, non-hormone-releasable compartment.  相似文献   

14.
15.
In previous work we demonstrated that the matrix-forming phenotype of cultured human cells from whole meniscus was enhanced by hypoxia (5% oxygen). Because the meniscus contains an inner region that is devoid of vasculature and an outer vascular region, here we investigate, by gene expression analysis, the separate responses of cells isolated from the inner and outer meniscus to lowered oxygen, and compared it with the response of articular chondrocytes. In aggregate culture of outer meniscus cells, hypoxia (5% oxygen) increased the expression of type II collagen and SOX9 (Sry-related HMG box-9), and decreased the expression of type I collagen. In contrast, with inner meniscus cells, there was no increase in SOX9, but type II collagen and type I collagen increased. The articular chondrocytes exhibited little response to 5% oxygen in aggregate culture, with no significant differences in the expression of these matrix genes and SOX9. In both aggregate cultures of outer and inner meniscus cells, but not in chondrocytes, there was increased expression of collagen prolyl 4-hydroxylase (P4H)alpha(I) in response to 5% oxygen, and this hypoxia-induced expression of P4H alpha(I) was blocked in monolayer cultures of meniscus cells by the hypoxia-inducible factor (HIF)-1alpha inhibitor (YC-1). In fresh tissue from the outer and inner meniscus, the levels of expression of the HIF-1alpha gene and downstream target genes (namely, those encoding P4H alpha(I) and HIF prolyl 4-hydroxylase) were significantly higher in the inner meniscus than in the outer meniscus. Thus, this study revealed that inner meniscus cells were less responsive to 5% oxygen tension than were outer meniscus cells, and they were both more sensitive than articular chondrocytes from a similar joint. These results suggest that the vasculature and greater oxygen tension in the outer meniscus may help to suppress cartilage-like matrix formation.  相似文献   

16.
Rheumatoid arthritic (RA) and osteoarthritic (OA) synovial cells in culture differ in their metabolic and proliferative behaviour. To assess links between these properties and nuclear changes, we used image analysis to study chromatin texture, together with nuclear morphometry and densitometry of OA and RA cells in primary culture. Chromatin pattern at the third day (D3) was heterogeneous and granular with chromatin clumps whereas at the final stage (D11) of culture a homogeneous and finely granular chromatin texture was observed. This evolution indicates global chromatin decondensation. These characteristics were more marked for RA than for OA nuclei. At each culture time, RA nuclei could be discriminated with high confidence from OA ones from parameters evaluating the organization of the chromatine texture. Nuclear image analysis is thus a useful tool for investigating synovial cell biology.  相似文献   

17.
Calcium and the cell wall   总被引:11,自引:5,他引:6  
Abstract. From this brief review it appears that the interactions between calcium ions and cell walls play a key role in plant physiology. Calcium ions are involved in many mechnisms: for example, stabilization of cell wall structures, acidic growth, ion exchange properties, control of the activities of wall enzymes. All these properties originate from the tight binding of calcium ions to the pectins present in the cell walls. The factor most important for controlling wall behaviour is the density of non-diffusible charges and, due to its high affinity, calcium can significantly affect this factor. We also discuss the theoretical ion exchange models in relation to the specific role of calcium ions.  相似文献   

18.
The orderly sequence of events that constitutes the cell cycle is carefully regulated. A part of this regulation depends upon the ubiquitous calcium signalling system. Many growth factors utilize the messenger inositol trisphosphate (InsP3) to set up prolonged calcium signals, often organized in an oscillatory pattern. These repetitive calcium spikes require both the entry of external calcium and its release from internal stores. One function of this calcium signal is to activate the immediate early genes responsible for inducing resting cells (G0) to re-enter the cell cycle. It may also promote the initiation of DNA synthesis at the G1/S transition. Finally, calcium contributes to the completion of the cell cycle by stimulating events at mitosis. The role of calcium in cell proliferation is highlighted by the increasing number of anticancer therapies and immunosuppressant drugs directed towards this calcium signalling pathway.  相似文献   

19.
Epithelial morphogenesis in many organs involves asymmetric microfilament-mediated cellular contractions. Similar contractions, in terms of ultrastructure and cytochalasin B sensitivity, can be induced in the carcinoma cell line C-4II in culture. This line was used to compare total intracellular calcium levels ([Ca]i) in contracted monolayer fragments and in control cultures, and to determine whether epithelial cell contraction depends on influx of extracellular Ca. [Ca]i, defined as Ca not displaceable by lanthanum, was measured by atomic absorption spectrophotometry. Degrees of contraction were determined from shape changes of monolayer fragments. Detachment from the growth surface initiated cellular contractions and caused an immediate increase in [Ca]i, from 1.0 to 4.0-5.0 micrograms Ca/mg protein in early confluent cultures, and from 0.3 to 1.0-2.0 micrograms Ca/mg protein in crowded cultures. This increase was followed by a gradual decline in [Ca]i, though Ca levels remained higher than in controls and contraction progressed for 30 min. Contraction was inhibited completely by cold (7 degrees C) and by Ca-free medium, and in a dose-dependent manner by papaverine (2.5 x 10(-6) M-2.5 x 10(-4) M), lanthanum (1.0 x 10(-6) M-1.0 x 10(-4) M); and D-600 (1.0-2.0 x 10(- 4) M). The Ca ionophore A23187 had no effect at 5.0 x 10(-6) M and was inhibitory at higher concentrations. The results provided direct evidence for increased [Ca]i in contracting epithelial cells, and suggest that Ca influx is required for such contraction to take place.  相似文献   

20.
Cell culture methods and models are key investigative tools for cell and molecular biology studies. Fetal bovine serum (FBS) is commonly used as an additive during cell culture since its constituents promote cell survival, proliferation and differentiation. Here we report that commercially available FBS from different major suppliers consistently contain precipitated, calcium oxalate crystals-either in the monohydrate (COM) or dihydrate (COD) form. Mineral structure and phase identification of the crystals were determined by X-ray diffraction, chemical composition by energy-dispersive X-ray microanalysis, and imaging and measurement of crystal growth steps by atomic force microscopy-all identified and confirmed crystallographic parameters for COM and COD. Proteins binding to the crystals were identified by immunoblotting, revealing the presence of osteopontin and fetuin-A (alpha(2)HS-glycoprotein)--known regulators of crystal growth found in serum. Macrophage cell cultures exposed to calcium oxalate crystals showed internalization of the crystals by phagocytosis in a process that induced disruption of cell-cell adhesion, release of reactive oxygen species and membrane damage, events that may be linked to the release of inflammatory cytokines by these cells into the culture media. In conclusion, calcium oxalate crystals found in commercially available FBS are toxic to cells, and their presence may confound results from in vitro studies where, amongst others, phagocytosis, biomineralization, renal cell and molecular biology, and drug and biomaterial testing are being examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号