共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biochemical Engineering Journal》2000,4(3):229-238
In this study, the competitive biosorption of iron(III) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was investigated in a single-staged batch reactor as a function of V0/X0 (volume of solution containing heavy metal mixture/quantity of biosorbent) ratio and second metal ion concentration at pH 2. The obtained results showed that the increase in biomass quantity (or the decrease of V0/X0 ratio) with the addition of second metal ion affected the removed quantities of iron(III) or chromium(VI). The sorption phenomenon was expressed by the competitive, multi-component Langmuir adsorption isotherm and this expression was used for calculating each residual or adsorbed metal ion concentration at equilibrium (Ceq,i or Cad,eq,i) at a constant V0/X0 ratio for a given combination of heavy metal ions in a single-staged batch reactor. Experimental Ceq,i and Cad,eq,i values were compared to those calculated and graphically determined. 相似文献
2.
Summary The more complex inhibitory effect of As(III) than that of As(V) on Fe(II) oxidation in a non-growing Thiobacillus ferrooxidans suspension was demonstrated. The yield of arsenic bioextraction from a chalcopyrite concentrate was not affected by arsenic inhibition due to the low sensitivity of the strain to arsenic ions, supported by a spontaneous conversion of As(III) to As(V). 相似文献
3.
The metabolism of dissimilatory iron-reducing bacteria (DIRB) may provide a means of remediating contaminated subsurface soils. The factors controlling the rate and extent of bacterial F(III) mineral reduction are poorly understood. Recent research suggests that molecular-scale interactions between DIRB cells and Fe(III) mineral particles play an important role in this process. One of these interactions, cell adhesion to Fe(III) mineral particles, appears to be a complex process that is, at least in part, mediated by a variety of surface proteins. This study examined the hypothesis that the flagellum serves as an adhesin to different Fe(III) minerals that range in their surface area and degree of crystallinity. Deflagellated cells of the DIRB Shewanella algae BrY showed a reduced ability to adhere to hydrous ferric oxide (HFO) relative to flagellated cells. Flagellated cells were also more hydrophobic than deflagellated cells. This was significant because hydrophobic interactions have been previously shown to dominate S. algae cell adhesion to Fe(III) minerals. Pre-incubating HFO, goethite, or hematite with purified flagella inhibited the adhesion of S. algae BrY cells to these minerals. Transposon mutagenesis was used to generate a flagellum-deficient mutant designated S. algae strain NF. There was a significant difference in the rate and extent of S. algae NF adhesion to HFO, goethite, and hematite relative to that of S. algae BrY. Amiloride, a specific inhibitor of Na + -driven flagellar motors, inhibited S. algae BrY motility but did not affect the adhesion of S. algae BrY to HFO. S.algae NF reduced HFO at the same rate as S. algae BrY. Collectively, the results of this study support the hypothesis that the flagellum of S. algae functions as a specific Fe(III) mineral adhesin. However, these results suggest that flagellum-mediated adhesion is not requisite for Fe(III) mineral reduction. 相似文献
4.
Studies with a diversity of hyperthermophilic and mesophilic dissimilatory Fe(III)-reducing Bacteria and Archaea demonstrated that some of these organisms are capable of precipitating gold by reducing Au(III) to Au(0) with hydrogen as the electron donor. These studies suggest that models for the formation of gold deposits in both hydrothermal and cooler environments should consider the possibility that dissimilatory metal-reducing microorganisms can reductively precipitate gold from solution. 相似文献
5.
Mechanisms for Accessing Insoluble Fe(III) Oxide during Dissimilatory Fe(III) Reduction by Geothrix fermentans 总被引:3,自引:0,他引:3 下载免费PDF全文
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 μM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest. 相似文献
6.
Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans 总被引:1,自引:0,他引:1
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 microM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest. 相似文献
7.
Regulation of siderophore production in response to iron concentration in the medium was examined. Threshold concentration was recorded for twenty fungi and three rhizobacterial pseudomonads. Organisms showed difference in threshold values at which they stopped siderophore elaboration. In nine fungi (3 aspergilli, 1 penicillium, N. crassa, F. dimerum and 3 mucors) siderophore production was repressed at 3 microM Fe(III). Siderophore production was repressed at 27 microM of Fe (III) in 3 aspergilli, 2 penicillia and 3 pseudomonads. Rest of the fungi had cut off values at 6, 9, 15, 21 microM of Fe(III) concentration. 相似文献
8.
Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration. 总被引:1,自引:0,他引:1
Naoya Ohmura Norio Matsumoto Kazuhiro Sasaki Hiroshi Saiki 《Applied and environmental microbiology》2002,68(1):405-407
Here we describe artificial help for the respiratory electron flow supporting anaerobic growth of Thiobacillus ferrooxidans through exogenous electrolysis. Flux between H(2) and a anode through cells was accomplished with electrochemical regeneration of iron. The electrochemical help resulted in a 12-fold increase in yield compared with the yield observed in its absence. 相似文献
9.
Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle 总被引:2,自引:2,他引:0
Johanna V. Weiss David Emerson Stephanie M. Backer J. Patrick Megonigal 《Biogeochemistry》2003,64(1):77-96
Iron plaque occurs on the roots of most wetland and submersed aquatic plant species and is a large pool of oxidized Fe(III) in some environments. Because plaque formation in wetlands with circumneutral pH has been largely assumed to be an abiotic process, no systematic effort has been made to describe plaque-associated microbial communities or their role in plaque deposition. We hypothesized that Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB) are abundant in the rhizosphere of wetland plants across a wide range of biogeochemical environments. In a survey of 13 wetland and aquatic habitats in the Mid-Atlantic region, FeOB were present in the rhizosphere of 92% of the plant specimens collected (n = 37), representing 25 plant species. In a subsequent study at six of these sites, bacterial abundances were determined in the rhizosphere and bulk soil using the most probable number technique. The soil had significantly more total bacteria than the roots on a dry mass basis (1.4 × 109 cells/g soil vs. 8.6 × 107 cells/g root; p < 0.05). The absolute abundance of aerobic, lithotrophic FeOB was higher in the soil than in the rhizosphere (3.7 × 106/g soil vs. 5.9 × 105/g root; p < 0.05), but there was no statistical difference between these habitats in terms of relative abundance (1% of the total cell number). In the rhizosphere, FeRB accounted for an average of 12% of all bacterial cells while in the soil they accounted for < 1% of the total bacteria. We concluded that FeOB are ubiquitous and abundant in wetland ecosystems, and that FeRB are dominant members of the rhizosphere microbial community. These observations provide a strong rationale for quantifying the contribution of FeOB to rhizosphere Fe(II) oxidation rates, and investigating the combined role of FeOB and FeRB in a rhizosphere iron cycle. 相似文献
10.
We present here the physicochemical and biochemical properties of NBD-DFO, the 7-nitrobenz-2-oxa-1,3-diazole (NBD) derivative of the siderophore, desferrioxamine B (DFO) (Lytton et al., Mol. Pharmacol. 40, 584, 1991). Modification of DFO at its terminal amine renders it more lipophilic, imparts to it fluorescent properties, and is conservative of the high-affinity iron(III) binding capacity. NBD-DFO partitions readily from aqueous solution into n-octanol (Pcoeff = 5) and displays solvent-induced shifts in absorption and fluorescence spectra. The relative quantum yield of the probe's fluorescence increases over a 10-fold range with decreasing dielectric constant of the solvent. Fluorescence is quenched upon binding of iron(III) to the probe. We demonstrate here the application of NBD-DFO for the specific detection and monitoring of iron (III) in solutions and iron(III) mobilization from cells. Interactions between fluorescent siderophore and the ferriproteins ferritin and transferrin were monitored under physiological conditions. Iron removal from ferritin was evident by the demonstrable quenching of NBD-DFO fluorescence by scavenged iron(III). Quantitation of iron sequestered from cells by NBD-DFO or from other siderophore-iron(III) complexes was accomplished by dissociation of NBD-DFO-Fe complex by acidification and addition of excess ethylenediamin-etetraacetic acid. The sensitivity of the method and the iron specificity indicate its potential for monitoring chelatable iron under conditions of iron-mediated cell damage, iron overload, and diseases of iron imbalance such as malaria. 相似文献
11.
In a previous study (Minotti, G., and Ikeda-Saito, M. (1991) J. Biol. Chem. 266, 20011-20017) we demonstrated the existence of a M(r) 66,000 microsomal iron protein (MIP) which stimulates NADPH oxidation by shunting electrons from NADPH-cytochrome P-450 reducase to its bound Fe(III). In the present study, purified MIP was depleted of iron and the apoMIP was examined for its ability to incorporate Fe(III) upon an incubation with Fe(II). It was found that apoMIP had an oxygen-dependent ferroxidase activity coupled with the incorporation of Fe(III). The reconstituted MIP exhibited a Fe(III) content and an NADPH oxidation activity similar to those of native MIP. However, the reconstitution of MIP from apoMIP and Fe(II) had to be performed in the presence of detergents to prevent the formation of protein aggregates and the oxidative incorporation of an iron which could not react with NADPH-cytochrome P-450 reductase. This redox inactive iron was probably bound nonspecifically to artifactual sites formed by the protein aggregates. 相似文献
12.
13.
Catechol dioxygenases are mononuclear non-heme iron enzymes that catalyze the oxygenation of catechols to aliphatic acids via the cleavage of aromatic rings. In the last 20 years, a number of (catecholato)iron(III) complexes have been synthesized and characterized as structural and functional models for the catechol-bound iron(III) form of catechol dioxygenases. This review focuses on the structural and spectroscopic characteristics and oxygenation activity of the title complexes. 相似文献
14.
Daniel C. Harris Philip Aisen 《Biochimica et Biophysica Acta (BBA)/General Subjects》1973,329(1):156-158
The rate of oxidation of Fe(II) by atmospheric oxygen at pH 7.0 is significantly enhanced by low molecular weight Fe(III)-complexing agents in the order EDTA ≈ nitrilotriacetate > citrate > phosphate > oxalate. This simple effect of Fe(III) binding probably accounts for the “ferroxidase” activity exhibited by transferrin and ferritin. 相似文献
15.
Yurii D. Perfiliev Denis A. Pankratov Sergey K. Dedushenko 《Inorganica chimica acta》2007,360(8):2789-2791
Here we report the formation of iron in hexavalent state, in ozonalysis of iron(III) in alkaline medium. The formation of tetrahedral ion is confirmed by UV-Visible and Mössbauer spectroscopic techniques. The value of isomer shift, δ, of the tetra-oxy anion is consistent with known δ values for various salts of iron(VI) ion. 相似文献
16.
R F Boyer S M Generous T J Nieuwenhuis R A Ettinger 《Biotechnology and applied biochemistry》1990,12(1):79-84
Immobilized metal ion affinity chromatography has been used to demonstrate and partially characterize Fe(III) binding sites on apoferritin. Binding of Fe(III) to these sites is influenced by pH, but not affected by high ionic strength. These results suggest that both ionic and coordinate covalent interactions are important in the formation of the Fe(III): apoferritin complex. This is, to our knowledge, the first demonstration of direct Fe(III) binding to apoferritin. Other immobilized metal ions, including Zn(II), Ni(II), Cu(II), Cr(III), Co(II), and Tb(III), displayed little or no adsorption of apoferritin. The analytical technique of immobilized metal ion affinity chromatography also shows great promise in the purification of apoferritin, ferritin, and other iron-binding proteins. 相似文献
17.
Zhen-yuan Nie Hong-chang Liu Jin-lan Xia Yi Yang Xiang-jun Zhen Li-juan Zhang Guan-zhou Qiu 《Biometals》2016,29(1):25-37
While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S0)) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S0. Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. 相似文献
18.
Königsberger LC Königsberger E May PM Hefter GT 《Journal of inorganic biochemistry》2000,78(3):175-184
Estimates of the concentrations and identity of the predominant complexes of iron with the low-molecular-mass ligands in vivo are important to improve current understanding of the metabolism of this trace element. These estimates require a knowledge of the stability of the iron-citrate complexes. Previous studies on the equilibrium properties of the Fe(III)-citrate and Fe(II)-citrate are in disagreement. Accordingly, in this work, glass electrode potentiometric titrations have been used to re-determine the formation constants of both the Fe(III)- and Fe(II)-citrate systems at 25 degrees C in 1.00 M (Na)Cl and the reliability of these constants has been evaluated by comparing the measured and predicted redox potentials of the ternary Fe(III)-Fe(II)-citrate system. The formation constants obtained in this way were used in computer simulation models of the low-molecular-mass iron fraction in blood plasma. Redox equilibria of iron are thus included in large models of blood plasma for the first time. The results of these calculations show the predominance of Fe(II)-carbonate complexes and a significant amount of aquated Fe(II) in human blood plasma. 相似文献
19.
The function of Mn(III) in plant acid phosphatase has been investigated by a metal-substitution study, and some properties of the Fe(III)-substituted enzyme were compared with those of the native Mn(III) enzyme and mammalian Fe(III)-containing acid phosphatases. 19F nuclear magnetic resonance (NMR) and proton relaxation rate measurements showed that inhibitors such as F− and nitrilotriacetic acid interact with paramagnetic Mn(III) active site. The 31P-NMR signal of the enzyme-phosphate complex was also broadened by the paramagnetic effect of Mn(III). In the metal-substitution experiments of the Mn(III)-acid phosphatase with Fe(III), Zn(II) and Cu(II), only the iron gave satisfactory substitution. The Fe(III)-substituted plant acid phosphatase exhibited an absorption maximum at 525 nm (ε = 3000), typical high spin ferric ESR signal at g = 4.39, and lower pH optimum (pH 4.8) than the native Mn(III)-enzyme (pH 5.8). The phosphatase activity of the Fe(III)-substituted enzyme was reduced to about 53% of that of the native enzyme. The substrate specificities of both metallophosphatases were remarkably similar, but different from that of the Fe(III)-containing uteroferrin. The present results indicate that Mn(III) and Fe(IIII) in the acid phosphatase play an important role on effective binding of phosphate and acceleration of hydrolysis of phosphomonoesters at pH 4–6. 相似文献
20.
Because it can undergo reversible changes in oxidation state, iron is an excellent biocatalyst but also a potentially deleterious metal. Iron-mediated toxicity has been ascribed to Fe(II), which reacts with oxygen to generate free radicals that damage macromolecules and cause cell death. However, we now report that Fe(III) exhibits microbicidal activity towards strains of Salmonella enterica, Escherichia coli and Klebsiella pneumoniae defective in the Fe(III)-responding PmrA/PmrB signal transduction system. Fe(III) bound to a pmrA Salmonella mutant more effectively than to the isogenic wild-type strain and exerted its microbicidal activity even under anaerobic conditions. Moreover, Fe(III) permeabilized the outer membrane of the pmrA mutant, rendering it susceptible to vancomycin, which is normally non-toxic to Gram-negative species. On the other hand, Fe(III) did not affect the viability of a mutant defective in Fur, the major regulator of cytosolic iron homeostasis, which is hypersensitive to Fe(II)-mediated toxicity. A functional pmrA gene was necessary for bacterial survival in soil. Our results indicate that Fe(III) exerts its microbicidal activity by a mechanism that is oxygen independent and different from that mediated by Fe(II). 相似文献