首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase the permeability of a cell membrane and enables transfer of genes. Poor plasmid mobility in tissues is one of the major barriers for the successful use of gene electrotransfer in gene therapy. Therefore, we analyzed the effect of electrophoresis on increasing gene electrotransfer efficiency using different combinations of high-voltage (HV) and low-voltage (LV) pulses in vitro on CHO cells. We designed a special prototype of electroporator, which enabled us to use only HV pulses or combinations of LV + HV and HV + LV pulses. We used optimal plasmid concentrations used in in vitro conditions as well as lower suboptimal concentrations in order to mimic in vivo conditions. Only for the lowest plasmid concentration did the electrophoretic force of the LV pulse added to the HV pulse increase the transfection efficiency compared to using only HV. The effect of the LV pulse was more pronounced for HV + LV, while for the reversed sequence, LV + HV, there was only a minor effect of the LV pulse. For the highest plasmid concentrations no added effect of LV pulses were observed. Our results suggest that there are different contributing effects of LV pulses: electrophoretically increased contact of DNA with the membrane and increased insertion of DNA into permeabilized cell membrane and/or translocation due to electrophoretic force, which appears to be the dominant effect.  相似文献   

2.
3.
BACKGROUND: Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage. METHODS: Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer. RESULTS: Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage. CONCLUSION: Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA.  相似文献   

4.
Gene electrotransfection using micro- or millisecond electric pulses is a well-established method for safe gene transfer. For efficient transfection, plasmid DNA has to reach the nucleus. Shorter, high-intensity nanosecond electric pulses (nsEPs) affect internal cell membranes and may contribute to an increased uptake of plasmid by the nucleus. In our study, nsEPs were applied to Chinese hamster ovary (CHO) cells after classical gene electrotransfer, using micro- or millisecond pulses with a plasmid coding the green fluorescent protein (GFP). Time gaps between classical gene electrotransfer and nsEPs were varied (0.5, 2, 6 and 24 h) and three different nsEP parameters were used: 18 ns-10 kV/cm, 10 ns-40 kV/cm and 15 ns-60 kV/cm. Results analyzed by either fluorescence microscopy or flow cytometry showed that neither the percentage of electrotransfected cells nor the amount of GFP expressed was increased by nsEP. All nsEP parameters also had no effects on GFP fluorescence intensity of human colorectal tumor cells (HCT-116) with constitutive expression of GFP. We thus conclude that nsEPs have no major contribution to gene electrotransfer in CHO cells and no effect on constitutive GFP expression in HCT-116 cells.  相似文献   

5.
Electropermeabilization/electroporation (EP) is a physical method that by application of electric pulses to cells increases cell membrane permeability and enables the introduction of molecules into the cells. One of the uses of EP in vivo is plasmid DNA electrotransfer to the skin for DNA vaccination. EP of tissues induces reduction of blood flow and, in combination with plasmid DNA, induction of an immune response. One of the EP protocols for plasmid DNA electrotransfer to the skin is a combination of high-voltage (HV) and low-voltage (LV) pulses. However, the effects of this pulse combination on skin-vessel blood flow are not known. Therefore, using intravital microscopy in a dorsal window chamber in mice and fluorescently labeled dextrans, the effects of one HV and eight LV pulses on skin vasculature were investigated. In addition, a detailed histological analysis was performed. Image analysis of fluorescence intensity changes demonstrated that EP induces a transient constriction and increased permeability of blood vessels as well as a “vascular lock.” Histological analysis revealed rounding up of endothelial cells and stacking up of erythrocytes at 1?h after EP. In addition, extravasation of erythrocytes and leukocyte infiltration accompanied by edema were determined up to 24?h after EP. In conclusion, our results show that blood flow modifying effects of EP in skin contribute to the infiltration of immune cells in the exposed area. When combined with plasmid DNA for vaccination, this could enable the initial and prolonged contact of immune cells with encoded therapeutic proteins.  相似文献   

6.
DHFR-deficient Chinese hamster ovary (CHO DHFR) cells are the most popular mammalian expression system for inducible amplification of transgene. In order to obtain more stable transfected CHO DHFR cell clones, transfection efficiency of electroporation under different conditions were systemically investigated using plasmid pSV-β-Gal as reporter gene. Transfection efficiency was proportionally increased with pulse duration and number of pulse applied. In addition, higher transfection efficiency was found in high salt extracellular solution (Berg's and Hank's buffers) than in intracellular solution (cytomix buffer) under the same electroporation condition. The highest transfection efficiency in examined conditions was about 1 in 350 cells (or 0.289%) when cells were electroporated with twice pulses at 400 V, 375 μF. The present study offers an optimized guideline for introducing exogenous DNA into CHO DHFR cells by electroporation.  相似文献   

7.
Gene electrotransfer is a promising nonviral method that enables transfer of plasmid DNA into cells with electric pulses. Although many in vitro and in vivo studies have been performed, the question of the implied gene electrotransfer mechanisms is largely open. The main obstacle toward efficient gene electrotransfer in vivo is relatively poor mobility of DNA in tissues. Since cells are mechanically coupled to their extracellular environment and act differently compared to standard in vitro conditions, we developed a three-dimensional (3-D) in vitro model of CHO cells embedded in collagen gel as an ex vivo model of tissue to study electropermeabilization and different parameters of gene electrotransfer. For this purpose, we first used propidium iodide to detect electropermeabilization of CHO cells embedded in collagen gel. Then, we analyzed the influence of different concentrations of plasmid DNA and pulse duration on gene electrotransfer efficiency. Our results revealed that even if cells in collagen gel can be efficiently electropermeabilized, gene expression is significantly lower. Gene electrotransfer efficiency in our 3-D in vitro model had similar dependence on concentration of plasmid DNA and pulse duration comparable to in vivo studies, where longer (millisecond) pulses were shown to be more optimal compared to shorter (microsecond) pulses. The presented results demonstrate that our 3-D in vitro model resembles the in vivo situation more closely than conventional 2-D cell cultures and, thus, provides an environment closer to in vivo conditions to study mechanisms of gene electrotransfer.  相似文献   

8.
Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6 µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79–84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle.  相似文献   

9.
Efficiency and reproducibility of gene electrotransfer depend on the electrical specifications provided by the pulse generator, such as pulse duration, pulse number, pulse frequency, pulse combination, and current intensity. Here, we describe the performances of GET42, a pulse generator specifically designed for gene electrotransfer into skeletal muscle. Expression of beta-galactosidase in the Tibialis anterior muscle of Sprague-Dawley male rats was increased 250-fold by GET42 compared to DNA injection alone. Combination of high and low current intensity pulses further increased transfection efficiency (400-fold compared to DNA injection without electrotransfer). Varying degrees of muscle necrosis were observed after gene electrotransfer. Nevertheless, muscle necrosis was dramatically reduced after optimization of cumulated pulse duration without significant reduction in transfection efficiency. Physiological applicability was illustrated by the analysis of cytochrome c promoter transactivation. In conclusion, GET42 has proven to be a reliable and efficient pulse generator for gene electrotransfer experiments, and provides a powerful mean to study in vivo the regulation of gene expression.  相似文献   

10.
In order to establish a simple and scaleable transfection system we have used the cationic polymer polyethylenimine (PEI) to study transient transfection in HEK293 and 293(EBNA) cells grown in serum-free suspension culture. The transfection complexes were made directly within the cell culture by consecutively adding plasmid and PEI (direct method). Alternatively, the DNA-PEI transfection complexes were prepared in fresh medium (1/10 culture volume) and then added to the cells (indirect method). The results of this study clearly show that the ratio of PEI nitrogen to DNA phosphate is very important for high expression levels. The precise ratio is dependent on the DNA concentration. For example, using 1 μg/ml DNA by the indirect method, the ratio of optimal PEI:DNA was about 10–13:1. However, the ratio increases to 33:1 for 0.1–0.2 μg/ml DNA. By testing several different molecular weights of the polycationic polymer we could show that the highest transfection efficiency was obtained with the PEI 25 kDa. Using PEI 25 kDa the indirect method is superior to the direct addition because significantly lower DNA concentrations are needed. The expression levels of the soluble human TNF receptor p55 are even higher at low DNA compared to 1 μg/ml plasmid. The EBV-based pREP vectors gave better transient gene expression when used in 293(EBNA) cells compared to HEK293 cells in suspension culture. No differences in expression levels in the two cell lines were observed when the pC1 (CMV)-TNFR was used. In conclusion, PEI is a low-toxic transfection agent which provides high levels of transient gene expression in 293(EBNA) cells grown in serum-free suspension culture. This system allows highly reproducible, cost-effective production of milligram amounts of recombinant proteins in 2–5 l spinner culture scale within 3–5 days. Fermentor scale experiments, however, are less efficient because the PEI-mediated transient tranfection is inhibited by conditioned medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Analysis of the structural properties of pCC3, a cryptic plasmid from Leuconostoc citreum C4 isolated from kimchi, determined its length as 3,338 bp and revealed three open reading frames (ORFs): ORF1–ORF3. ORF3 showed high homology with a replication initiation protein of the theta-type plasmid pTXL1. The fragment encompassing ORF3 and its upstream sequences (nt 1,299–1,634) was found to contain a functional plasmid replicon. A new shuttle vector, pUCC3E1, was constructed based on pCC3. Using Southern hybridization analysis, no single-stranded DNA intermediate was detected from Leu. citreum harboring pUCC3E1, which indicates that pCC3 replicated via the theta mechanism. The pUCC3E1 could be replicated in E. coli TG1 (5.8 × 104 CFU/μg DNA) and the developed cloning hosts, Leu. citreum C16 (2.1 × 102 CFU/μg DNA) and Leu. citreum GJ7 (8.0 × 101 CFU/μg DNA). pUCC3E1 was stably maintained in Leu. citreum C16 (for 100 generations, ca. 94.2%) in the absence of erythromycin (5 μg/ml).  相似文献   

12.
Stable transformants of Chromobacterium violaceum were obtained by high-voltage electroporation with a 7-kilobase binary plasmid. The technique was reliable, reproducible, and simple, with efficiencies of 105 transformants/μg of plasmid DNA. The electrical conditions that resulted in the highest efficiencies were short pulse length (4.4–4.5 ms) and high voltage (12.5 kV/cm). The numbers of transformants were almost the same during the growth exponential phase (variation at optical density) and resulted in the highest efficiencies at DNA concentration of 250 pg/ml. Saturation appeared to begin at 4 μg/ml of DNA. This method of C. violaceum transformation should enhance the genetic and biotechnological research by providing a valuable, widely used procedure of introducing DNA into this bacterium.  相似文献   

13.
Gene transfer using electrical pulses is a rapidly expanding field. Many studies have been performed in vitro to elucidate the mechanism of DNA electrotransfer. In vivo, the use of efficient procedures for DNA electrotransfer in tissues is recent, and the question of the implied mechanisms is largely open. We have evaluated the effects of various combinations of square wave electric pulses of variable field strength and duration, on cell permeabilization and on DNA transfection in the skeletal muscle in vivo. One high voltage pulse of 800 V/cm, 0.1 ms duration (short high pulse) or a series of four low voltage pulses of 80 V/cm, 83 ms duration (long low pulses) slightly amplified transfection efficacy, while no significant permeabilization was detected using the (51)Cr-EDTA uptake test. By contrast, the combination of one short high pulse followed by four long low pulses led to optimal gene transfer efficiency, while inducing muscle fibers permeabilization. These results are consistent with additive effects of electropermeabilization and DNA electrophoresis on electrotransfer efficiency. Finally, the described new combination, as compared to the previously reported use of repeated identical pulses of intermediate voltage, leads to similar gene transfer efficiency, while causing less permeabilization and thus being likely less deleterious. Thus, combination of pulses of various strengths and durations is a new procedure for skeletal muscle gene transfer that may represents a clear improvement in view of further clinical development.  相似文献   

14.
Bacterial infections represent serious diseases in aquaculture, rapidly leading to fish death by septicemia. We investigated whether the electrotransfer of green fluorescent protein gene fusion epinecidin-1 (CMV-gfp-epi) DNA into zebrafish muscle could regulate the fish immune response and inhibit bacterial growth. Electroporation parameters such as the number of pulses, voltage, and amount of plasmid DNA were analyzed, and results demonstrated the greatest mRNA expression level of gfp-epi relative to β-actin was obtained with a pulse number of 4, a voltage strength of 100 V/cm, a concentration of DNA of 90 μg/fish, and electroporation for 96 h. In addition, the cytomegalovirus (CMV) promoter exhibited higher activity compared to the mylz promoter in muscle for electrotransfer in zebrafish. GFP fluorescence and gfp-epi mRNA expression in tissues after electroporation were also studied by a polymerase chain reaction, immunohistochemistry, and fluorescence microscopy. gfp-epi expression was significantly correlated with decreased bacterial numbers and immune-related gene expression. These data demonstrate that electroporation of epinecidin-1 might have provoked an inflammatory response that accounts for the improvement in bacterial clearance.  相似文献   

15.
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the local or systemic secretion of therapeutic proteins. However, current DNA delivery technologies have to be improved. We report very efficient luciferase gene transfer into muscle fibres obtained through the delivery of squarewave electric pulses of moderate field strength (100–200 V/cm) and of long duration (20 ms) to muscle previously injected with plasmid DNA. This intramuscular ‘electrotransfer’ method increases reporter gene expression by more than 100 times. It is noteworthy that this expression remains high and stable for at least 9 months. Moreover, intramuscular electrotransfer strongly decreases the interindividual variability usually observed after plasmid DNA injection into muscle fibres. Therefore, DNA electrotransfer in muscle possesses broad potential applications in gene therapy and for physiological, pharmacological and developmental studies.  相似文献   

16.
A study of mechanisms of electrotransfection using Escherichia coli (JM 105) and the plasmid DNA pBR322 as model system is reported. pBR322 DNA carries an ampicillin resistance gene: E. coli transformants are conveniently assayed by counting colonies in a selection medium containing 50 micrograms/ml ampicillin and 25 micrograms/ml streptomycin. Samples not exposed to the electric field showed no transfection. In the absence of added cations, the plasmid DNA remains in solution and the efficiency of the transfection was 2 x 10(6)/micrograms DNA for cells treated with a 8-kV/cm, 1-ms electric pulse (square wave). DNA binding to the cell membrane greatly enhanced the efficiency of the transfection and this binding was increased by milimolar concentrations of CaCl2, MgCl2, or NaCl (CaCl2 greater than MgCl2 greater than NaCl). For example, in the presence of 2.5 mM CaCl2, 55% of the DNA added bound to E. coli and the transfection efficiency was elevated by two orders of magnitude (2 x 10(8)/micrograms DNA). These ions did not cause cell aggregation. With a low ratio of DNA to cells (less than 1 copy/cell), transfection efficiency correlated with the amount of DNA bound to the cell surface irrespective of salts. When the DNA binding ratio approached zero, the transfection efficiency was reduced by two to three orders, indicating that DNA entry by diffusion through the bulk solution was less than 1%. Square pulses of up to 12 kV/cm and 1 ms were used in the electrotransfection experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.

Background  

Electroporation-based gene therapy and DNA vaccination are promising medical applications that depend on transfer of pDNA into target tissues with use of electric pulses. Gene electrotransfer efficiency depends on electrode configuration and electric pulse parameters, which determine the electric field distribution. Numerical modeling represents a fast and convenient method for optimization of gene electrotransfer parameters. We used numerical modeling, parameterization and numerical optimization to determine the optimum parameters for gene electrotransfer in muscle tissue.  相似文献   

18.
A putative multidrug efflux pump, EmrD-3, belonging to the major facilitator superfamily (MFS) of transporters and sharing homology with the Bcr/CflA subfamily, was identified in Vibrio cholerae O395. We cloned the emrD-3 gene and evaluated its role in antimicrobial efflux in a hypersensitive Escherichia coli strain. The efflux activity of this membrane protein resulted in lowering the intracellular concentration of ethidium. The recombinant plasmid carrying emrD-3 conferred enhanced resistance to several antimicrobials. Among the antimicrobials tested, the highest relative increase in minimum inhibitory concentration (MIC) of 102-fold was observed for linezolid (MIC = 256 μg/ml), followed by an 80.1-fold increase for tetraphenylphosphonium chloride (TPCL) (156.2 μg/ml), 62.5-fold for rifampin (MIC = 50 μg/ml), >30-fold for erythromycin (MIC = 50 μg/ml) and minocycline (MIC = 2 μg/ml), 20-fold for trimethoprim (MIC = 0.12 μg/ml), and 18.7-fold for chloramphenicol (MIC = 18.7 μg/ml). Among the fluorescent DNA-binding dyes, the highest relative increase in MIC of 41.7-fold was observed for ethidium bromide (125 μg/ml) followed by a 17.2-fold increase for rhodamine 6G (100 μg/ml). Thus, we demonstrate that EmrD-3 is a multidrug efflux pump of V. cholerae, the homologues of which are present in several Vibrio spp., some members of Enterobacteriaceae family, and Gram-positive Bacillus spp.  相似文献   

19.
Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca(2+)-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF-α), and regeneration (MyoD1, myogenin, and Myf5) was investigated, using pulse parameters of both electrochemotherapy (8 HV) and DNA delivery (HVLV). Three pulsing conditions were used: 8 high-voltage pulses (8 HV), resulting in large permeabilization and ion flux, and a combination of one high-voltage pulse and one low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA reducing Ca(2+) influx. Larger Ca(2+) influx as induced by 8-HV pulses leads to muscle damage and muscle fiber regeneration through recruitment of satellite cells. The extent of Ca(2+) influx determines the muscular response to electrotransfer and, thus, the success of a given application. In the case of electrochemotherapy, in which the objective is cell death, a large influx of Ca(2+) may be beneficial, whereas for DNA electrotransfer, muscle recovery should occur without myofiber loss to ensure preservation of plasmid DNA.  相似文献   

20.
While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO–TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P < 0.001). Heparin also exhibited a cell aggregation elimination role at all concentrations (P < 0.001). Furthermore, heparin promoted cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 104 cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P < 0.001) both occurring at 250 μg/ml heparin. When agitated, cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO–TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号