首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An enzyme KfoG with unknown function is coded by the gene kfoG. Gene kfoG belongs to genes from region 2, which are responsible for structure of capsular polysaccharide. Only two enzymes, KfoG and KfoC, coded by genes from region 2, have a glycosyltransferase motif. KfoC is the bifunctional enzyme, which is able to add both GalNAc and GlcUA on nascent polysaccharide, termed chondroitin polymerase. KfoG was predicted to be a fructosyltransferase. The gene that codes the KfoG enzyme was disrupted using homological recombination and absence of this gene was confirmed on both DNA and RNA levels. After disruption no structural changes have been observed, what indicates that fructose branching of the chondroitin backbone is not caused by enzymes, which are coded by genes from region 2 of the K4 capsular gene cluster.  相似文献   

3.
Summary The production of the K4 polysaccharide was obtained for the first time extracellularly from a strain of Escherichia coli. The set up of the fermentation conditions led to the maximum fermentation yield, as extracellular K4, after 20 h. Purification and characterization of this K4 resulted in 200 mg/L of highly purified K4.  相似文献   

4.
Regulation of capsular polysaccharide synthesis in Escherichia coli K12   总被引:27,自引:12,他引:27  
  相似文献   

5.
Escherichia coli K4 synthesizes a capsular polysaccharide (CPS) consisting of a fructose-branched chondroitin (GalNAc-GlcA(fructose)n), which is a biosynthetic precursor of chondroitin sulfate. Here, the role of kfoE in the modification of the chondroitin backbone was investigated using knock-out and recombinant complementation experiments. kfoE disruption and complementation had no significant effect on cell growth. CPS production was increased by 15 % in the knock-out strain, and decreased by 21 % in the knock-out strain complemented with recombinant kfoE. CPS extracted from the knock-out strain was chondroitin, whereas CPS extracted from the complemented strain was a fructose-branched chondroitin. The results demonstrated that the kfoE gene product altered the fructose group at the C3 position of the GlcA residue during production of K4CPS.  相似文献   

6.
Methylation, 1H nuclear magnetic resonance, and bacteriophage degradation results indicate that the Escherichia coli serotype K30 capsular polysaccharide consists of leads to 2)-alpha-D-Manp-(1 leads to 3)-beta-D-Galp-(1 leads to chains carrying beta-D-GlcUAp-(1 leads to 3)-alpha-D-Galp-(1 leads to branches at position 3 of the mannoses.  相似文献   

7.
A new substrate for the deacetylase which catalyzes the removal of the N-acetyl groups from N-acetylheparosan in the course of heparin biosynthesis has been prepared. The capsular polysaccharide from Escherichia coli 010:K5:H4, which is structurally identical to N-acetylheparosan, was partially N-deacetylated by hydrazinolysis and was then radioactively labeled by N-acetylation with [3H]acetic anhydride. Upon incubation of the labeled polysaccharide with microsomes from the Furth mastocytoma, [3H]acetyl groups were released, demonstrating that the bacterial polysaccharide was a substrate for the N-deacetylase. Reaction conditions were established which permitted the quantitative assay of N-deacetylase activity; a Km of 74 mg polysaccharide/liter was determined, which corresponds to 2.1 X 10(-4) M, expressed as concentration of uronic acid; Vmax was 3.4 nmol/mg protein/liter. In confirmation of previous results, it was observed (a) that the reaction was stimulated by 3'-phosphoadenylylsulfate (up to a maximum of 45% at a concentration of 0.5 mM), suggesting that N-sulfation occurred which facilitated continued action of the N-deacetylase, and (b) that NaCl and KCl inhibited the enzyme, with 50% reduction of activity at a concentration of 25 mM. In the course of this work, a simple, single-vial assay procedure was used. Released [3H]acetate was extracted from the acidified reaction mixture with a toluene- or xylene-based scintillation fluid containing 10% isoamyl alcohol and measured directly by scintillation spectrometry.  相似文献   

8.
The chemical structure of the K52 antigenic capsular polysaccharide (K52 antigen) of Escherichia coli O4:K52:H- was elucidated by composition, nuclear magnetic resonance spectroscopy, methylation, periodate oxidation before and after graded acid hydrolysis and by oligosaccharide analysis. The polysaccharide consists of a backbone of alpha-galactose units interlinked between C1 and C3 by phosphodiester bridges. This poly(alpha-galactosyl-phosphate) is substituted at C2 of each galactose unit by beta-fructofuranose residues. About 80% of the galactose units are O-acetylated at C4 and about 10% of the fructose units are both O-acetylated and O-propionylated at C1. The K52 polysaccharide has an average molecular mass of 34 kDa, thus consisting of approximately 65 fructosyl-galactosyl-phosphate repeating units.  相似文献   

9.
Spontaneous mutants of Rhizobium leguminosarum biovar viciae strain C1204b were selected for their ability to tolerate 0.2 M NaCl, a growth-inhibiting level of salt for the parental strain. Transposon-mediated salt-sensitive mutants of strain C1204b were screened for their inability to grow in 0.08 M NaCl. Quantitation of the free-amino acid pools in the mutants grown in NaCl revealed a dramatic increase in glutamine, serine, glutamate and proline, and to a lesser extent alanine and glycine in the salt-tolerant mutants in comparison with the parental strain exposed to NaCl; but only glutamate and proline increased in the salt-sensitive mutants under NaCl stress. Extracellular polysaccharide levels were quantitated for the salt-tolerant mutants and determined to be approximately two-fold higher than for the parental strain. Although the mutations that occurred in the NaCl-tolerant and NaCl-sensitive strains did not interfere with nodule formation, no nitrogenase activity could be observed in the NaCl tolerant mutants as evaluated by acetylene reduction.  相似文献   

10.
The majority of capsular polysaccharides (K antigens) are linear molecules and their genes have a common functional organisation encoding common steps in capsule biogenesis. However, the K4 antigen is a substituted polymer composed of a chondroitin backbone with a fructose side chain. In order to determine whether K4 biosynthesis uses these common mechanisms the K4 antigen genes were cloned. DNA probes taken from the two conserved regions of the K1 genes were used to isolate one plasmid, pRD1, homologous to both probes. Immunological analysis was used to show that pRD1 directs the production of the substituted K4 antigen on the cell surface. Southern hybridisation was used to show that the cloned genes are organised in the same way as other K antigen gene clusters. We conclude that the branched K4 antigen is handled by the same post-polymerisation mechanisms as other linear K antigens.  相似文献   

11.
The Escherichia coli K42 capsular polysaccharide consists of leads to 3)-alpha-D-Galp-(1 leads to 3)-alpha-D-GalUAp-(1 leads to 3)-alpha-L-Fucp-(1 leads to repeating units. The E. coli K42 and Klebsiella K63 antigens are serologically identical.  相似文献   

12.
The structure of the repeating unit of the capsular polysaccharide from Escherichia coli serotype K36 has been established from the results of spectroscopic and chemical analyses of (a) P1, the tetrasaccharide obtained on depolymerisation of the polysaccharide with a bacteriophage-borne endo-galactosidase, (b) P1-alditol, and (c) the original polysaccharide. The repeating unit, which is identical to that reported for Klebsiella K57, has the following structure. (Formula: see text).  相似文献   

13.
Escherichia coli K1 secretes a homopolymer capsular polysaccharide (CPS) consisting of alpha 2,8 linked N-acetylneuraminic acid (poly 2,8NeuNAc). Typically poly 2,8NeuNAc is arranged in low and high order alpha helices with carboxyl and hydroxyl groups extending from the helices. Several properties of CPS such as antigenicity and metal binding can be influenced by its structural conformation. We examined the influences of metal ions and temperature on the secondary structure of polya2,8NeuNAc. Conformation alteration was detected by ultraviolet (UV) spectroscopy and circular dichroism (CD). The majority of metal ions tested had no detectable influence on poly a2,8NeuNAc structure. In contrast, Yb3+., Hg2+, and Cu2+ ions greatly altered the UV and CD spectra, which suggests that these ions had disrupted the alpha helical structure of poly 2,8NeuNAc. These changes were influenced by the metal ion concentration. When poly 2,8NeuNAc was incubated at temperatures ranging from 20 - 60°C, alterations in its UV absorption spectra were also seen. The most significant change occurred between 35 and 40°C. In summary, this study suggests that the higher order structure and function of bacterial CPS may be influenced by environmental factors  相似文献   

14.
The structure of the capsular polysaccharide from E. coli O9:K37 (A 84a) has been studied, using methylation analysis, Smith degradation, and graded acid hydrolysis. The configurations at the anomeric centres were assigned by 1H-n.m.r. spectroscopy of the polysaccharide and its derivatives and oligosaccharide fragments. The polysaccharide has the following trisaccharide repeating-unit which is unique in the E. coli series of capsular polysaccharides in possessing a 1-carboxyethylidene group as the sole acidic function. (Formula: see text) E. coli capsular polysaccharides have been classified into seventy-four serotypes. The structures of about twenty of these polysaccharides have been elucidated, one of which, K29, has been reported to contain a 1-carboxyethylidene group. In continuation of a programme aimed at establishing the structural basis for the serology and immunochemistry of the E. coli capsular antigens, we now report on the structure of the capsular polysaccharide from E. coli O9:K37.  相似文献   

15.
Abstract The genes directing the expression of group II capsules in Escherichia coli are organized into three regions. The central region 2 is type specific and thought to determine the synthesis of the respective polysaccharide, whilst the flanking regions 1 and 3 are common to all group II gene clusters and direct the surface expression of the capsular polysaccharide. In this communication we analyze the involvement of region 1 and 3 genes in the synthesis of the capsular KS polysaccharide. Recombinant E. coli strains harboring all KS specific region 2 genes and having various combinations of region 1 and 3 gene were studied using immunoelectron microscopy. Membranes from these bacteria were incubated with UDP[14C]GlcA and UDPG1cNAc in the absence or presence of KS polysaccharide as an exogenous acceptor. It was found that recombinant strains with only gene region 2 did not produce the K5 polysaccharide. Membranes of such strains did not synthesize the polymer and did not elongate K5 polysaccharide added as an exogenous acceptor. An involvement of genes from region 1 (notably kps C and kps S) and from region 3 (notably kps T) in the K5 polysaccharide synthesis was apparent and is discussed.  相似文献   

16.
Plaque morphology indicated that the five Escherichia coli K1-specific bacteriophages (A to E) described by Gross et al. (R. J. Gross, T. Cheasty, and B. Rowe, J. Clin. Microbiol. 6:548-550, 1977) encode K1 depolymerase activity that is present in both the bound and free forms. The free form of the enzyme from bacteriophage E was purified 238-fold to apparent homogeneity and in a high yield from ammonium sulfate precipitates of cell lysates by a combination of CsCl density gradient ultracentrifugation, gel filtration, and anion-exchange chromatography. The enzyme complex had an apparent molecular weight of 208,000, as judged from its behavior on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was dissociated by sodium dodecyl sulfate at 100 degrees C to yield two polypeptides with apparent molecular weights of 74,000 and 38,500. Optimum hydrolytic activity was observed at pH 5.5, and activity was strongly inhibited by Ca2+; the Km was 7.41 X 10(-3) M. Rapid hydrolysis of both the O-acetylated and non-O-acetylated forms of the K1 antigen, an alpha 2----8-linked homopolymer of N-acetylneuraminic acid, and of the meningococcus B antigen was observed. Limited hydrolysis of the E. coli K92 antigen, an N-acetylneuraminic acid homopolymer containing alternating alpha 2----8 and alpha 2----9 linkages, occurred, but the enzyme failed to release alpha 2----3-, alpha 2----6-, or alpha 2----9-linked sialic residues from a variety of other substrates.  相似文献   

17.
The structure of the capsular polysaccharide from Escherichia coli O8:K44 (A):H- (K44 antigen) has been established using the techniques of methylation, beta-elimination, deamination, and Smith degradation. N.m.r. spectroscopy (13C and 1H) was used extensively to establish the nature of the anomeric linkages of the polysaccharide and of oligosaccharides derived through degradative procedures. The K antigen is comprised of repeating units of the linear tetrasaccharide shown. This acidic polysaccharide represents the first instance of an E. coli K antigen in this series (group A) that has been found to contain two different 2-acetamido-2-deoxyhexoses.  相似文献   

18.
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.  相似文献   

19.
Four bacteriophages were identified, which carry glycan hydrolases specific for the Escherichia coli K12 capsular polysaccharide. All these glycanases catalyze the hydrolysis of the alpha-L-rhamnosyl-1,5-beta-3-deoxy-D-manno-2-octulosonic acid linkage as demonstrated with a special thiobarbituric acid assay procedure, which discriminates between the C5 substituted and unsubstituted 3-deoxy-D-manno-2-octulosonic acid (dOclA). This assay, together with gel filtration, 1H-NMR and 13C-NMR spectroscopy showed that depolymerization led to the dimer of the K12 repeating unit, (,5-beta-dOcl1Ap-2,3-alpha-LRhap-1,2-alpha LRhap-1,)2, as the primary degradation product. The phages (phi 12-W, phi 12-S, phi 82-W1, phi 82-W2) were tested for their ability to infect Escherichia coli strains Su65-42 (O4:K12:H-) and CDC63-57 [O139:K82(12):H1]. phi 12-W and phi 12-S, respectively, infected strain Su65-42 only, phi 82-W2 CDC63-57 only, and phi 82-W1 both bacterial strains. These distinct host specificities cannot be explained by differences in the action of the glycanases, which depolymerize the capsules of both strains.  相似文献   

20.
The chemical structure of the K4-specific capsular polysaccharide (K4 antigen) of Escherichia coli O5:K4:H4 was elucidated by composition, carboxyl reduction periodate oxidation methylation nuclear-magnetic-resonance spectroscopy and enzymatic cleavage. The polysaccharide consists of a backbone with the structure----3)-beta-D-glucuronyl-(1,4)-beta-D-N-acetylgalactosaminyl(1- to which beta-fructofuranose is linked at C-3 of glucuronic acid. Mild acid hydrolysis liberated fructose and converted the K4 antigen into a polysaccharide which has the same structure as chondroitin. The defructosylated polysaccharide was a substrate for hyaluronidase and chondroitinase. The serological reactivity of the K4 polysaccharide was markedly reduced after defructosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号