首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the Yellow Sea of China, large‐scale green tides have broken out for three consecutive years from 2007 to 2009. As part of the efforts to localize the algal source, two cruises were conducted in the early stage and the outbreak stage of the bloom in 2009. We analyzed the morphological and genetic diversity of drifting Ulva specimens and culture‐derived isolates from seawater sampled in different localities. For phylogenetic analyses, the nuclear encoded ribosomal DNA internal transcribed spacer region (ITS nrDNA) and the plastid encoded large subunit of ribulose‐1, 5‐bisphosphate carboxylase/oxgenase gene (rbcL) were used. Our molecular and morphological data indicate that the dominant free‐floating Ulva species in 2008 and 2009 possibly belonged to a single strain of the U. linza‐procera‐prolifera (LPP) clade. The ITS sequences from bloom‐forming algal samples with dense branches were identical to those from U. linza‐like specimens without branches derived from the Yellow Sea. Microscopic individuals of the dominant Ulva strain were detected in eight stations, revealing that spore dispersal in the water helped to enlarge biomass in the water during the outbreak stage of green tide in the Yellow Sea.  相似文献   

2.
In this paper, species compositions and seasonal variations of attached Ulva species on Porphyra aquaculture rafts and free floating Ulva species at Rudong coastal area, Jiangsu Province of China were investigated during 2010–2011. Based on the sequences analysis of nuclear-encoded ITS (including 5.8S rDNA regions) and 5S rDNA spacer regions, dominant species of both attached and free-floating Ulva samples were identified as Ulva compressa, Ulva linza, Ulva prolifera and Ulva flexuosa. Phylogenetic tree based on sequences of ITS and 5S rDNA spacer regions for attached and free-floating Ulva species was constructed, respectively. Species compositions of the Ulva population attached on aquaculture rafts varied with seasons, and U. prolifera was only found on aquaculture rafts in March 2011 during the 2010–2011 Porphyra yezoensis cultivation season, which had the same sequences of ITS and 5S rDNA spacer regions as that of the dominant species bloomed in the Yellow Sea of China in 2008. Dominant species of the free-floating Ulva population at the early stage of the green tide were U. compressa, U. flexuosa, and U. linza. Free-floating U. prolifera appeared in the middle of May, 2011. ITS sequence similarity rates of U. compressa and U. flexuosa between the attached and free-floating species were 100%. And ITS and 5S rDNA spacer sequences of the attached and the free-floating U. prolifera population also showed no differences. Further study showed that there were two types of free-floating U. prolifera population (Type 5S-A and Type 5S-B) based on 5S rDNA spacer sequences. The present study would provide some useful information for clarifying the outbreak mechanism of green tides occurred in the Yellow Sea, China.  相似文献   

3.
The green macroalgal genus Ulva (Ulvales, Ulvophyceae, Chlorophyta) is distributed worldwide from marine to freshwater environments. Comparative analyses of hyposalinity tolerance among marine, brackish, and freshwater Ulva species were performed by fluorescein diacetate viability counts. The subtidal marine species Ulva sp., collected from a depth of 30 m, showed the poorest tolerance to low salinity. This species died in 5 practical salinity units (PSU) artificial seawater or freshwater within 1 day. Its closely related species U. linza L. (an intertidal species) and U. prolifera Müller (a brackish species) showed varying tolerances to low salinity. After 7 days of freshwater exposure, the viability of U. linza L. decreased to approximately 20%, while U. prolifera Müller showed nearly 100% viability. The freshwater species U. limnetica Ichihara et Shimada, not yet found in coastal areas, was highly viable in seawater.  相似文献   

4.
5.
Ulva prolifera, a common green seaweed, is one of the causative species of green tides that occurred frequently along the shores of Qingdao in 2008 and had detrimental effects on the preparations for the 2008 Beijing Olympic Games sailing competition, since more than 30 percent of the area of the games was invaded. In view of the rapid accumulation of the vast biomass of floating U. prolifera in green tides, we investigated the formation of sporangia in disks of different diameters excised from U. prolifera, changes of the photosynthetic properties of cells during sporangia formation, and development of spores. The results suggested that disks less than 1.00 mm in diameter were optimal for the formation of sporangia, but there was a small amount of spore release in these. The highest percentage of area of spore release occurred in disks that were 2.50 mm in diameter. In contrast, sporangia were formed only at the cut edges of larger disks (3.00 mm, 3.50 mm, and 4.00 mm in diameter). Additionally, the majority of spores liberated from the disks appeared vigorous and developed successfully into new individuals. These results implied that fragments of the appropriate size from the U. prolifera thalli broken by a variety of factors via producing spores gave rise to the rapid proliferation of the seaweed under field conditions, which may be one of the most important factors to the rapid accumulation of the vast biomass of U. prolifera in the green tide that occurred in Qingdao, 2008.  相似文献   

6.
For the last 2 years, vast accumulations of the unattached filamentous green alga, Enteromorpha prolifera, have occurred during summer along the coastal region of the Yellow Sea, China. However, algae do not seem to occur after the end of the fertile season. It has been suggested that banks of microscopic forms of the algae, primarily spores, function as a survival mechanism for this opportunistic alga. Therefore, in this study, field surveys and laboratory cultures were conducted to determine if somatic cells were serving as a propagule bank to enable the algae to survive through periods of unfavorable conditions. Laboratory experiments demonstrated that somatic regeneration was one of the most important approaches by which E. prolifera colonized and flourished in the study area. Indeed, at least 19.32% of somatic cells from the filamentous segments could survive for 2 months under various temperatures (0, 5, 10, 15, 20, and 30°C at an irradiance of 60 μmol photons m−2 s−1) and irradiances (darkness, 5 10, 15, 20 and 30 μmol photons m−2 s−1 at a temperature of 20°C). Additionally, greater than 35.85% of the somatic cells could survive at 0°C or in darkness for 2 months, and no less than 15.99% of these cells resumed growth when the temperature and irradiance were adjusted to the normal levels (20°C and 60 μmol photons m−2 s−1). Furthermore, the results of field surveys revealed that viable E. prolifera was widespread in high quantities in the sediment of the Yellow Sea when the macroalga was absent. Taken together, the results of this study suggest that somatic cells may act as an overwintering stage for the annual spring bloom of E. prolifera. These findings should be useful in future studies conducted to behavior of somatic cells in green tide as well as in the management of future spring blooms of E. prolifera.  相似文献   

7.
Molecular analysis of green-tide-forming macroalgae in the Yellow Sea   总被引:2,自引:0,他引:2  
In the summer of 2008, free-floating green algae bloomed in the Yellow Sea. Samples were collected in a wide area (119°32′-122°00′E, 32°25′-36°49′N). We calculated the sequence divergences of nuclear ITS, chloroplast rbcL, and psbA data of free-floating samples collected from the Yellow Sea and Ulvaceae from Europe and Japan. In the ITS sequence, 19 out of the 21 Yellow Sea samples of 2008 were identical to those of a sample taken at Qingdao in 2007. A low divergence (0.2%) was found in remaining two samples. Similar evidence was shown by pairwise distances of rbcL and psbA gene sequence data, implying the uniformity of the Yellow Sea blooms in 2007 and 2008. The ITS sequence of the Yellow Sea samples differed 8.1-10.8% from free-floating Enteromorpha or Ulva reported worldwide. ITS-based molecular phylogenetic results and rbcL sequence data grouped the free-floating alga in the Yellow Sea into one clade with Enteromorpha procera, Enteromorpha linza and Enteromorpha prolifera. Furthermore, both morphological characteristics and ribotype network of the ITS sequences imply that the blooming algae in 2007 and 2008 were E. prolifera. The haplotypes of the Yellow Sea free-floating E. prolifera are closely related to those from the Japanese coast but less to European and American algae.  相似文献   

8.
Although nutrient enrichment of estuarine and coastal waters is considered a key factor for the development of green tides, the extent, distribution, and species composition of blooms vary among systems of similar nutrient loading, which compromises our ability to predict these events based on information about nutrient status alone. Additional factors may play a role in the control and development of macroalgal blooms. The identification of relevant scales of variation is a necessary prerequisite before explanatory models can be proposed and tested. In this study spatial and temporal patterns of biomass distribution were assessed for two Ulva morphologies in two Irish estuaries heavily affected by green tides (wet biomass >1 kg m−2 during the peak bloom). Moreover, using genetic markers, the species composition of these green tides was assessed. Results revealed that these blooms were multi-specific, with Ulva prolifera, U. compressa and U.rigida the most frequent species. The species U. prolifera and U. compressa usually showed a tubular morphology, while U. rigida was mainly laminar. A seasonal succession common to both estuaries was also identified, with the bloom dominated by tubular species during spring and early summer, and co-dominated by tubular and laminar morphologies during late summer and autumn. Moreover, tubular and laminar morphologies exhibited different distribution patterns, with tubular morphologies varying at bigger spatial scales and higher biomass than the laminar. As tubular and laminar morphologies exhibited different distribution patterns, varying tubular morphologies along bigger spatial scales with higher biomass levels than the laminar. Considering that tubular morphologies were usually anchored to the sediment, while laminar Ulva were usually observed free-floating, these differences could explain a differential influence by water motion. An important annual and decadal variability in biomass levels of Ulva was observed, in the case of the Tolka estuary a noticeable increase over the last two decades. These findings should be considered for the development of management and monitoring strategies since the different habitat of laminar and tubular morphologies (anchored vs. free-floating) may play an important role in the balance of nutrients and biomass in the estuary, or determine the response to pollutant exposure. Furthermore, the presence of different species with different ecological requirements could favour the duration and extension of the bloom though temporal and spatial successions.  相似文献   

9.
During the summer of 2008 and 2009, massive algal blooms repeatedly broke out in the Yellow Sea of China. These were undoubtedly caused by the accumulations of one or more species in the macroalgal genus Ulva. In previous reports, morphological observation indicated that the species involved in this phenomenon is Ulva prolifera but molecular analyses indicated that the species belongs to an Ulva linza–procera–prolifera (LPP) clade. Correct identification of the bloom species is required to understand and manage the blooms, but the taxonomic status of the bloom species remains unclear. In the current study, the taxonomic status of 22 selected specimens from the Yellow Sea was assessed by using both morphological and molecular (ITS and rbcL sequences) data. In addition, 5S rDNA analyses were performed for those samples clustering in the LPP clade, and phylogenetic tree and ribotype analyses were constructed for determining the possible origin of the bloom. Three free-floating and two attached Ulva species were distinguished and described: Ulva compressa Linnaeus and Ulva pertusa Kjellman were found in free-floating samples; U. linza Linnaeus was found on rocks; and U. prolifera O.F. Müller was found in both habitats. Diversity in free-floating Ulva of the Yellow Sea appears to be greater than previously thought. The dominant free-floating Ulva species, U. prolifera, was not closely related to local populations attached to rocks but was closely related to populations from Japan.  相似文献   

10.
The nuclear-encoded ITS and associated 5.8S rDNA regions were sequenced for 72 specimens of Ulva collected from 44 rivers across Japan, including U. prolifera Müller from the Shimanto River, Kochi Prefecture, as well as 26 samples originally identified as U. linza L. from 20 coastal marine areas. Sequence data revealed that the samples fall into six distinct clades: the U. flexuosa Wulfen clade (2 samples), the Ulva linza-procera-prolifera (LPP) complex clade (75 samples), Ulva sp. 1 clade (3 samples), Ulva sp. 2 clade (7 samples), Ulva sp. 3 clade (4 samples) and Ulva sp. 4 clade (7 samples). The LPP complex contained a mixture of 26 samples collected from seashores and 49 samples obtained from rivers, including U. prolifera from the Shimanto River, and GenBank data for U. linza and U. procera Ahlner. The samples of the LPP complex differed by only 0–7 substitutions (0–1.149%). Subsequent phylogeographic analyses of the LPP complex based on the 5S rDNA spacer region revealed the presence of two further groupings: a group including 22 strictly marine littoral U. linza samples and a U. prolifera group composed of a mixture of 4 marine samples and all 49 river samples. The monophyly of all river samples indicates that adaptation to low salinity might have occurred only once in the evolutionary history of the LPP complex.  相似文献   

11.
From 2008 to 2013, vast green tides mainly composed of Ulva prolifera consecutively invaded the coast of Qingdao (36°06′N, 120°25′E, PR China) in June and July. Previous studies have shown that the early green tides initially formed in the Porphyra yezoensis aquaculture area of the Subei Shoal, southern Yellow Sea. To date, multiple studies have demonstrated that green algae micro-propagules play an important role in the formation of green tides. In this study, we aimed to assess the temporal and spatial distribution of green algae micro-propagules in an extensive area of the Yellow Sea and to determine the species diversity of propagules during the development of the large-scale green tide. We found that the quantity of micro-propagules increased with the free-floating biomass from the initial generation to the development phase of the green tide in mid May. From late May to mid June, the micro-propagule density decreased sharply despite a continuous increase of the floating macroalgae biomass. In addition, our data indicate that the coastal area of the Subei Shoal has always been the distribution center of the micro-propagules, even prior to the large-scale green tide formation. Furthermore, diverse green algae species, including Ulva prolifera, Ulva linza, Ulva flexuosa, Ulva compressa, Ulva pertusa and Blidingia sp., were identified among the micro-propagules in the survey sea area. Finally, we determined that the distribution of U. prolifera micro-propagules is closely related to the floating algal mats and attached macroalgae on Porphyra aquaculture rafts.  相似文献   

12.
From 2008 to 2016, massive floating green macroalgal blooms occurred annually during the summer months in the Yellow Sea. The original source of these blooms was traced based on the spatio-temporal distribution and species composition of Ulva microscopic propagules and settled Ulva vegetative thalli monthly from December 2012 to May 2013 in the Yellow Sea. High quantities of Ulva microscopic propagules in both the water column and sediments were found in the Pyropia aquaculture area along the Jiangsu coast before a green macroalgal bloom appeared in the Yellow Sea. The abundance of Ulva microscopic propagules was significantly lower in outer areas compared to in Pyropia aquaculture areas. A molecular phylogenetic analysis suggested that Ulva prolifera microscopic propagules were the dominant microscopic propagules present during the study period. The extremely low biomass of settled Ulva vegetative thalli along the coast indicated that somatic cells of settled Ulva vegetative thalli did not provide a propagule bank for the green macroalgal blooms in the Yellow Sea. The results of this study provide further supporting evidence that the floating green macroalgal blooms originate from green macroalgae attached to Pyropia aquaculture rafts along the Jiangsu coastline of the southern Yellow Sea.  相似文献   

13.
The presence of Ulva microscopic propagules may play an important role in the rapid development of high-biomass blooms of green algae in the Yellow Sea. Six cruises were conducted, to determine the abundance and distribution of Ulva microscopic propagules associated with a green tide that developed in the southern coastal waters of the Yellow Sea from April to August, 2012. Results indicated that Ulva microscopic propagules were widespread in these waters, with the highest density being up to 4800 ind. L−1, prior to the appearance of the green tide in April. High densities were also widely distributed along the coast during May and June, after the appearance of the floating green tide. The quantity of Ulva microscopic propagules significantly decreased when the floating green tide declined in July, reaching densities of up to 162 ind. L−1, following the disappearance of the floating green tide in August. Quantitative studies on the distribution patterns of Ulva microscopic propagules along the southern coast of the Yellow Sea indicated a significant correlation between density and salinity, turbidity and nutrient concentrations. Temporal and geographical distribution patterns of Ulva microscopic propagules were also significantly affected by the presence of a large biomass of attached, or floating, Ulva species algae.  相似文献   

14.
Trends in wrack composition and biomass, and its relationship with the anthropogenic impact were studied along a coastal area in Nuevo Gulf (south Patagonia) in front of Puerto Madryn city. Beach-cast macroalgae composition was sampled from 1992 to 1999 in the Puerto Madryn beaches and in several other nearby beaches in 1993, 1996 and 1998. Historical information was based on local knowledge and observations reported by marine biologists who worked in the area. The botanical composition of the beach-cast macroalgae in Puerto Madryn indicates a succession in the dominance from Codium spp. to Ulva spp. during the 1990s and from Ulva to Undaria pinnatifida since 1998, accompanied by a significant decrease in biomass of Gracilaria gracilis and Macrocystis pyrifera. The increase of the opportunist species such as Ulva may be supported by the continuous delivery of waste waters into the Nuevo Gulf while the dominance of U. pinnatifida may be associated with port activities. During the sampling period the highest wrack biomass values were recorded in spring and summer. The beach-cast seaweed biomass harvested by the municipality of Puerto Madryn during beach cleaning operation, ranged between 2500 and 12000 t year–1 ( 200 and 960 t dry weight). Wrack harvesting produces an environmental impact by removing sand from the beach and affecting coastal communities. Composting of wrack is proposed as one of the environmental alternatives to land disposal.  相似文献   

15.
浒苔干粉末提取物对东海原甲藻和中肋骨条藻的克生作用   总被引:4,自引:0,他引:4  
韩秀荣  高嵩  侯俊妮  李鸿妹  石晓勇 《生态学报》2013,33(23):7417-7429
研究不同溶剂的浒苔干粉末组织提取液对两种赤潮藻—东海原甲藻和中肋骨条藻生长的克生效应。结果表明, 浒苔提取物中确实含有可以影响赤潮藻类生长的克生物质,克生作用具有较明显的浓度效应,添加浓度低时可能会表现为一定的促进生长的作用,添加浓度较高时表现为抑制作用,添加浓度越大,抑制作用越强,即“低促高抑”的特点,这与浒苔提取物对其他微藻的作用相似。其中,蒸馏水提取物对这两种赤潮藻的克生作用小于有机溶剂提取物,有机溶剂中,甲醇和乙酸乙酯提取物对这两种赤潮藻的克生效果最好,正己烷相对较差。根据相似相溶原理,可以初步推断最有效的克生物质应为具有相对较高的极性的有机物。两种赤潮藻对克生物质的敏感程度不同。东海原甲藻对克生物质的敏感性高于中肋骨条藻。蒸馏水、甲醇、乙酸乙酯、正己烷的浒苔干粉末提取物影响东海原甲藻生长的致死作用阈值浓度分别为5.00 g/L、0.50 g/L、0.50 g/L、0.63 g/L(相当于浒苔新鲜藻体浓度为22.00 g-wet/L、2.20 g-wet/L、2.20 g-wet/L、2.75 g-wet/L);影响中肋骨条藻生长的致死作用阈值浓度则分别为20.00 g/L、1.25 g/L、1.25 g/L、2.50 g/L(相当于新鲜藻体浓度为88.00 g-wet/L、5.50 g-wet/L、5.50 g-wet/L、11.00 g-wet/L)。  相似文献   

16.
Since 2007, reoccurring large-scale green algae blooms have caused deleterious effects to the estuarine ecosystem of Yellow Sea, northern China and subsequent economical losses. Previous surveys indicated the green tides were initiated in the coastal water of southern Jiangsu province where Porphyra farming was intensively conducted; however, the main ‘seed source’ of floating green algae is still under debate. Ulva prolifera was confirmed to be the major causative species of green tides. The multiple sympatric ulvoid species in the natural environment has complicated species identification in both field surveys and laboratory studies due to their morphological plasticity. Thus, we developed a genetic identification key based on restriction fragment length polymorphism (RFLP) analysis of the ITS nuclear marker to discriminate the common Ulva and Blidingia species in the Yellow Sea. Ten genetic lineages (1 in Blidingia, 9 in Ulva) were detected along the coast of China through phylogenetic analysis of ITS sequences. They can be separated by virtual restriction digestion using the four selected restriction enzymes (BspT107 I, EcoO109 I, Hin1 I and VpaK11B I). With additional PCR amplification of the 5S spacer region, we were able to discriminate U. prolifera from Ulva linza. Using this genetic key, we screened macroalgal samples collected from the coast of the Yellow Sea, and the results indicated 6 common lineages (U. prolifera, U. linza, Ulva compressa, Ulva pertusa, Clade 6 and Blidingia sp.) in this region, which could be explicitly distinguished by a single enzyme (BspT107 I) coupled with 5S spacer polymorphism. U. prolifera was confirmed to be present on the Porphyra aquaculture rafts with seasonal variation in the species composition. This genetic key will facilitate our long-term field surveys to investigate the origin of the floating U. prolifera and furthermore to explore its bloom dynamics along the coast of the Yellow Sea. It also provided a framework for the future inclusion of more Ulva species, which will expand the usage of this key.  相似文献   

17.
Intertidal Ulva mats occur annually in winter and spring in the Xiangshan Bay (29°26′–29°34′ N, 121°27′–121°50′ E) of China. Thousands of tons of Ulva biomass have been harvested as edible seaweeds for human consumption for several decades in this region. This investigation was designed to quantify Ulva microscopic propagules associated with the mat, identify species composition, and to analyze intra-species relationships using three molecular markers. Phylogenetic analysis based on the nuclear encoded rDNA internal transcribed spacer region, the plastid encoded large subunit of the ribulose 1,5-bisphosphate carboxylase gene, and the 5S rDNA spacer region showed that the mat was principally composed of Ulva prolifera and Ulva flexuosa. Their propagules were detected in both the water column and sediment. Based on phylogenetic analyses of the 5S rDNA spacer region, mat samples of U. prolifera and U. flexuosa were genetically distinct from the green tide samples in the Yellow Sea and U. flexuosa samples from Jiangsu coasts, respectively, revealing that isolated geographical position of the Xiangshan Bay might result in the maintenance of a distinct Ulva population. The results demonstrate that high-resolution DNA markers have great potential in identification and discrimination at and below the species level.  相似文献   

18.
Although the green seaweed Ulva is one of the most common seaweeds in the coastal regions with well-studied ecological characteristics, few reverse genetic technologies have been developed for it. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a simple genome-editing technology based on a ribonucleoprotein (RNP) complex composed of an endonuclease and programmable RNA to target particular DNA sequences. Genome editing makes it possible to generate mutations on a target gene in non-model organisms without established transgenic technologies. In this study, we applied the CRISPR-Cas9 RNP genome-editing system to the green seaweed Ulva prolifera, using polyethylene glycol (PEG)-mediated transfection. Our experimental system disrupts a single gene (UpAPT) encoding adenine phosphoribosyl transferase (APT) and generates a resistant phenotype for gametophytes cultured in a medium with toxic compound 2-fluoroadenine. The PEG-mediated transfection used for gametes resulted in 2-fluoroadenine-resistant strains containing short indels or substitutions on UpAPT. Our results showed that the CRISPR-Cas9 system with PEG-mediated transfection was efficient for genome editing in Ulva.  相似文献   

19.
20.
Concentrations of heavy metals Fe, Mn, Cu, Zn, Pb, Cd, and Ni were determined in the thalluses of the green alga Ulva fenestrata sampled from different locations in Peter the Great Bay (Sea of Japan). According to the metal concentrations in Ulva, the degree of pollution of the surveyed areas in Peter the Great Bay decreases in the following series: Amur Bay > Ussuri Bay > Nakhodka Bay > Vostok Bay > the water area of Far Eastern State Marine Nature Biosphere Reserve. The microelement composition of Ulva from open-shore stations reflects the heavy metal pollution level of water areas as a whole. The concentrations of trace elements in U. fenestrata from closed coastal areas are indicative of marine coastal water pollution from local sources. Generally, metal concentrations in U. fenestrata from Peter the Great Bay are similar to heavy metal levels in non-polluted or weakly polluted coastal areas of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号