首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Was the initiation of translation in early eukaryotes IRES-driven?   总被引:1,自引:0,他引:1  
The initiation of translation in eukaryotes generally involves the recognition of a 'cap' structure at the 5' end of the mRNA. However, for some viral and cellular mRNAs, a cap-independent mechanism occurs through an mRNA structure known as the internal ribosome entry site (IRES). Here, I postulate that the first eukaryotic mRNAs were translated in a cap-independent, IRES-driven manner that was then superseded in evolution by the cap-dependent mechanism, rather than vice versa. This hypothesis is supported by the following observations: (i) IRES-dependent, but not cap-dependent, translation can take place in the absence of not only a cap, but also many initiation factors; (ii) eukaryotic initiation factor 4E (eIF4E) and eIF4G, molecules absolutely required for cap-dependent translation, are among the most recently evolved translation factors; and (iii) functional similarities suggest the evolution of IRESs from spliceosomal introns. Thus, the contemporary cellular IRESs might be relics of the past.  相似文献   

2.
Vagner S  Galy B  Pyronnet S 《EMBO reports》2001,2(10):893-898
Studies on the control of eukaryotic translation initiation by a cap-independent recruitment of the 40S ribosomal subunit to internal messenger RNA sequences called internal ribosome entry sites (IRESs) have shown that these sequence elements are present in a growing list of viral and cellular RNAs. Here we discuss their prevalence, mechanisms whereby they may function and their uses in regulating gene expression.  相似文献   

3.
Internal ribosome entry sites (IRESs) are specialized mRNA elements that allow recruitment of eukaryotic ribosomes to naturally uncapped mRNAs or to capped mRNAs under conditions in which cap-dependent translation is inhibited. Putative cellular IRESs have been proposed to play crucial roles in stress responses, development, apoptosis, cell cycle control, and neuronal function. However, most of the evidence for cellular IRES activity rests on bicistronic reporter assays, the reliability of which has been questioned. Here, the mechanisms underlying cap-independent translation of cellular mRNAs and the contributions of such translation to cellular protein synthesis are discussed. I suggest that the division of cellular mRNAs into mutually exclusive categories of “cap-dependent” and “IRES-dependent” should be reconsidered and that the implications of cellular IRES activity need to be incorporated into our models of cap-dependent initiation.  相似文献   

4.
The use of small molecule inhibitors of cellular processes is a powerful approach to understanding gene function that complements the genetic approach. We have designed a high throughput screen to identify new inhibitors of eukaryotic protein synthesis. We used a bicistronic mRNA reporter to multiplex our assay and simultaneously screen for inhibitors of cap-dependent initiation, internal initiation and translation elongation/termination. Functional screening of >90 000 compounds in an in vitro translation reaction identified 36 inhibitors, 14 of which are known inhibitors of translation and 18 of which are nucleic acid-binding ligands. Our results indicate that intercalators constitute a large class of protein synthesis inhibitors. Four non-intercalating compounds were identified, three of which block elongation and one of which inhibits initiation. The novel inhibitor of initiation affects 5' end-mediated initiation, as well as translation initiated from picornaviral IRESs, but does not significantly affect internal initiation from the hepatitis C virus 5'-untranslated region. This compound should be useful for delineating differences in mechanism of initiation among IRESs.  相似文献   

5.
In addition to the cap-dependent mechanism, eukaryotic initiation of translation can occur by a cap-independent mechanism which directs ribosomes to defined start codons enabled by internal ribosome entry site (IRES) elements. IRES elements from poliovirus and encephalomyocarditis virus are often used to construct bi- or oligocistronic expression vectors to co-express various genes from one mRNA. We found that while cap-dependent translation initiation from bicistronic mRNAs remains comparable to monocistronic expression, internal initiation mediated by these viral IRESs is often very inefficient. Expression of bicistronic expression vectors containing the hepatitis B virus core antigen (HBcAg) together with various cytokines in the second cistron of bicistronic mRNAs gave rise to very low levels of the tested cytokines. On the other hand, the HBcAg was well expressed when positioned in the second cistron. This suggests that the arrangement of cistrons in a bicistronic setting is crucial for IRES-dependent translation of the second cistron. A systematic examination of expression of reporter cistrons from bicistronic mRNAs with respect to position was carried out. Using the dual luciferase assay system we show that the composition of reading frames on a bicistronic mRNA and the order in which they are arranged define the strength of IRES-dependent translation. Although the cellular environment and the nature of the IRES element influence translation strength the dominant determinant is the nature and the arrangement of cistrons on the mRNA.  相似文献   

6.
p27 is a key regulator of cell proliferation through inhibition of G(1) cyclin-dependent kinase (CDK) activity. Translation of the p27 mRNA is an important control mechanism for determining cellular levels of the inhibitor. Nearly all eukaryotic mRNAs are translated through a mechanism involving recognition of the 5' cap by eukaryotic initiation factor 4E (eIF4E). In quiescent cells eIF4E activity is repressed, leading to a global decline in translation rates. In contrast, p27 translation is highest during quiescence, suggesting that it escapes the general repression of translational initiation. We show that the 5' untranslated region (5'-UTR) of the p27 mRNA mediates cap-independent translation. This activity is unaffected by conditions in which eIF4E is inhibited. In D6P2T cells, elevated cyclic AMP levels cause a rapid withdrawal from the cell cycle that is correlated with a striking increase in p27. Under these same conditions, cap-independent translation from the p27 5'-UTR is enhanced. These results indicate that regulation of internal initiation of translation is an important determinant of p27 protein levels.  相似文献   

7.

Background  

Internal ribosomal entry sites (IRESs) provide alternative, cap-independent translation initiation sites in eukaryotic cells. IRES elements are important factors in viral genomes and are also useful tools for bi-cistronic expression vectors. Most existing RNA structure prediction programs are unable to deal with IRES elements.  相似文献   

8.
Ribosome recruitment to eukaryotic mRNAs is generally thought to occur by a scanning mechanism, whereby the 40S ribosomal subunit binds in the vicinity of the 5'cap structure of the mRNA and scans until an AUG codon is encountered in an appropriate sequence context. Study of the picornaviruses allowed the characterization of an alternative mechanism of translation initiation. Picornaviruses can initiate translation via an internal ribosome entry segment (IRES), an RNA structure that directly recruits the 40S ribosomal subunits in a cap and 5' end independent fashion. Since its discovery, the notion of IRESs has extended to a number of different virus families and cellular RNAs. This review summarizes features of both cap-dependent and IRES-dependent mechanisms of translation initiation and discusses the role of cis-acting elements, which include the 5' cap, the 5'-untranslated region (UTR) and the poly(A) tail as well as the possible roles of IRESs as part of a cellular stress response mechanism and in the virus replication cycle.  相似文献   

9.

Background

The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES) lack secondary structure and to examine the generality of the hypothesis.

Methodology/Principal Findings

IRESs of the yeast and the fruit fly are located in the 5′UTR immediately upstream of the initiation codon. The minimum folding energy (MFE) of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure.

Conclusions

We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5′-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.  相似文献   

10.
11.
Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.  相似文献   

12.
In eukaryotic cells, efficient translation of most cellular mRNAs requires the synergistic interplay between the m7GpppN cap structure and the poly(A) tail during initiation. We have developed and characterized a cell-free system from human HeLa cells that recapitulates this important feature, displaying more than one order of magnitude of translational synergism between the cap structure and the poly(A) tail. The stimulation of cap-dependent translation by the poly(A) tail is length-dependent, but not mediated by changes in mRNA stability. Using this system, we investigated the effect of the poly(A) tail on the translation of picornaviral RNAs, which are naturally polyadenylated but initiate translation via internal ribosome entry sites (IRESs). We show that translation driven by the IRESs of poliovirus (PV), encephalomyocarditis virus (EMCV), and hepatitis A virus is also significantly augmented by a poly(A) tail, ranging from an approximately 3-fold stimulation for the EMCV-IRES to a more than 10-fold effect for the PV IRES. These results raise interesting questions concerning the underlying molecular mechanism(s). The cell-free system described here should prove useful in studying these questions as well as providing a general biochemical tool to examine the translation initiation pathway in a more physiological setting.  相似文献   

13.
Internal ribosome entry sites (IRESs) are functional RNA elements that can directly recruit ribosomes to an internal position of the mRNA in a cap-independent manner to initiate translation. Recently, IRES elements have attracted much attention for their critical roles in various processes including translation initiation of a new type of RNA, circular RNA (circRNA), with no 5′ cap to support classical cap-dependent translation. Thus, an integrative data resource of IRES elements with experimental evidence will be useful for further studies. In this study, we present IRESbase, a comprehensive database of IRESs, by curating the experimentally validated functional minimal IRES elements from literature and annotating their host linear and circular RNAs. The current version of IRESbase contains 1328 IRESs, including 774 eukaryotic IRESs and 554 viral IRESs from 11 eukaryotic organisms and 198 viruses, respectively. As IRESbase collects only IRES of minimal length with functional evidence, the median length of IRESs in IRESbase is 174 nucleotides. By mapping IRESs to human circRNAs and long non-coding RNAs (lncRNAs), 2191 circRNAs and 168 lncRNAs were found to contain at least one entire or partial IRES sequence. IRESbase is available at http://reprod.njmu.edu.cn/cgi-bin/iresbase/index.php.  相似文献   

14.
《Seminars in Virology》1997,8(3):274-288
The 5′ nontranslated RNAs of hepatitis C virus (HCV) and several other members of theFlaviviridaecontain highly structured segments which form internal ribosome entry sites (IRESs). Thesecis-active RNA elements direct the cap-independent initiation of translation of the viral polyprotein in association withtrans-acting cellular and possibly viral proteins, and thus they play a key role in the replication of the virus. The structure of the HCV IRES does not resemble that of any picornaviral IRES, and its function is uniquely dependent upon RNA sequence extending 3′ of the site of translation initiation as well as structure surrounding the initiator AUG.  相似文献   

15.
In order to study the eukaryotic translation initiation mechanisms of "internal initiation," "re-initiation," and/or "coupled internal initiation," a series of model mRNAs have been constructed which contain two non-overlapping open reading frames (ORFs) that encode different lengths of rabbit alpha globin. These mRNAs, along with the bicistronic constructs TK/CAT and TK/P2CAT developed by Pelletier and Sonenberg (Pelletier, J., and Sonenberg, N. (1988) Nature 334, 320-325, 1988), were used to program an in vitro rabbit reticulocyte lysate translation system. Cap-dependent and cap-independent translation were distinguished by monitoring translation in the presence or absence of exogenously added cap analog (m7GTP). Messenger RNAs which translate both ORF1 and ORF2 by a cap-dependent mechanism, as well as mRNAs that translate ORF2 by a cap-independent mechanism while still translating ORF1 in a cap-dependent fashion have been obtained. These same alpha globin mRNAs differ by no more than 45 nucleotides in intercistronic length. Initiation factor addition studies were performed in this same in vitro translation system. Both eukaryotic initiation factor (eIF)-4F and, to a lesser extent, eIF-4B can stimulate translation of an internally located ORF independent of upstream ORF translation and in a manner not dependent on mRNA cap recognition. This indicates that the cap-recognition initiation factor, eIF-4F, and eIF-4B facilitate cap-independent and internal initiation of an open reading frame.  相似文献   

16.
17.
Many studies demonstrated that there are several type bands of prion protein in cells. However, the formation of different prion protein bands is elusive. After several low molecular weight bands of prion protein appeared in SMB-S15 cells infected with scrapie agent Chandler, we think that IRES-dependent translation mechanism induced by prion is involved in the formation of prion protein bands. Then we designed a series of pPrP-GFP fusing plasmids and bicistronic plasmids to identify the IRES sites of prion protein gene and found 3 IRES sites inside of PrP mRNA. We also demonstrated that cap-independent translation of PrP was associated with the ER stress through Tunicamycin treatment. We still found that only IRE1 and PERK pathway regulated the IRES-dependent translation of PrP in this study. Our results indicated, we found that PrP gene had an IRES-dependent translation initiation mechanism and we successfully identified the IRESs inside of the prion protein gene.  相似文献   

18.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

19.
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation.  相似文献   

20.
IRESs are known to recruit ribosomes directly, without a previous scanning of untranslated region of mRNA by the ribosomes. IRESs have been found in a number of viral and cellular mRNAs. Experimentally, IRESs are commonly used to direct the expression of the second cistrons of bicistronic mRNAs. The mechanism of action of IRESs is not fully understood and a certain number of laboratories were not successful in using them in a reliable manner. Three observations done in our laboratory suggested that IRESs might not work as functionally as it was generally believed. Stem loops added before IRESs inhibited mRNA translation. When added into bicistronic mRNAs, IRESs initiated translation of the second cistrons efficiently only when the intercistronic region contained about 80 nucleotides, and they did not work any more effectively with intercistronic regions containing at least 300–400 nucleotides. Conversely, IRESs inserted at any position into the coding region of a cistron interrupted its translation and initiated translation of the following cistron. The first two data are hardly compatible with the idea that IRESs are able to recruit ribosomes without using the classical scanning mechanism. IRESs are highly structured and cannot be scanned by the 40S ribosomal subunit. We suggest that IRESs are shortcircuited and are essentially potent stimulators favoring translation in particular physiological situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号