首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have sampled populations of the parthenogenetic and polyploid earthworm Eiseniella tetraedra along the Ume, Vindel and Sävar Rivers in northern Sweden. The Vindel River is one of the last free‐flowing large rivers in NW Europe, while the Ume River, which flows parallel to it, is harnessed with twenty major dams. Clones were identified on the basis of overall enzyme phenotypes that were detected using starch gel electrophoresis. We found that clone pool diversity is higher along the Vindel River than along the Ume River and the clone pool similarity is, in a similar fashion, higher along the free‐flowing river. Evidently the dams stop effectively clone dispersal along the Ume River. Clone diversity is highest at the river mouth. The small free‐running Sävar River had also high clone diversity at the lower course of the river. Clone turnover between years is high. We found no evidence for parallel adaptation of clones along the two rivers.  相似文献   

2.
3.
Aim A regional analysis was used to explore the influence of river regulation on the dominance of non‐native, invasive shrubs and trees. We addressed the following questions: (1) How do large dams affect hydrological parameters that influence riparian vegetation? (2) How do flow regimes affect the dominance of non‐native woody species? (3) How do changes in flow regimes affect the dominance of non‐native woody species? Location South‐western USA. Methods We sampled the canopy cover of woody species on 179 point bars along seven non‐dammed and thirteen dammed river segments. Wilcoxon rank sum tests were used to determine differences between flow parameters in dammed and non‐dammed rivers. We used correlation analyses and generalized linear model comparisons to examine associations of flow parameters and canopy cover of native (Populus and Salix) and non‐native (Tamarix and Elaeagnus) taxa. An index of flow alteration that was created using principal components analysis was regressed with vegetation cover. Results Tamarix cover was positively related to drainage area, flow constancy, August and May median flow and flow recession rate, but Elaeagnus cover was unrelated to flow variables. River segments with peak flows in late summer or high constancy had the highest Tamarix cover. Populus cover was positively influenced by low maximum temperatures and frequent high pulses. Flow alteration was negatively related to Populus cover and positively related to Tamarix cover. Total non‐native, Elaeagnus and Salix covers were not correlated with flow alteration. Main conclusions Rivers with a large drainage area and low flow variability are inherently more vulnerable to invasions. River regulation does not necessarily increase the cover of non‐native, invasive species. Instead, changes in flow allow proliferation of species that have life‐history traits suited to modified flow regimes. River restoration projects that aim to reinstate natural flow regimes should be designed with knowledge of native and non‐native species' life history strategies.  相似文献   

4.
The production of Campsurus violaceus nymphs was investigated from October 1987 to September 1988 in the Baía River, a secondary channel of the Paraná River, Brazil. The annual production of this species during this period was 16.48 g dry wt m-2 y-1and the P:B ratio was 4.9. This low ratio compared to other rivers occurred because the Baía River was strongly influenced by the hydrological regime of the Paraná River, where nymphs migrated to avoid adverse conditions in the river during the flood phase. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Mechanisms of Riparian Cottonwood Decline Along Regulated Rivers   总被引:1,自引:1,他引:0  
Decline of riparian forests has been attributed to hydrologic modifications to river flows. However, little is known about the physiological and structural adjustments of riparian forests subject to modified flow regimes, and the potential for forest restoration using historic flow regimes is poorly understood. In this paired river study, we compared hydrology, water relations, and forest structure in cottonwood-dominated floodplains of the regulated Green River to those of the unregulated Yampa River. We measured floodplain groundwater levels, soil water availability, cottonwood xylem pressure (Ψxp), and leaf-level stomatal conductance (gs) to assess current impacts of river regulation on the water status of adult cottonwoods. We also simulated a flood on the former floodplain of the regulated river to evaluate its impact on cottonwood water relations. Canopy and root structure were quantified with estimates of cottonwood leaf area and percent live canopy and root density and biomass, respectively. Regulation of the Green River has lowered the annual peak flow yet raised minimum flows in most years, resulting in a 60% smaller stage change, and lowered soil water availability by as much as 70% compared to predam conditions. Despite differences in water availability, daily and seasonal trends in Ψxp and gs were similar for cottonwoods on the regulated and unregulated rivers. In addition, soil water added with the experimental flood had little effect on cottonwood water relations, contrary to our expectations of alleviated water stress. Green River cottonwoods had 10%–30% lower stand leaf area, 40% lower root density, and 25% lower root biomass compared with those for Yampa River cottonwoods. Our results suggest that water relations at the leaf and stem level are currently similar for Yampa and Green River trees due to structural adjustments of cottonwood forests along the Green River, triggered by river regulation.  相似文献   

6.
The vegetation of the Paraná River floodplain has physiognomic, structural and ecological characteristics that are distinct from those of the surrounding landscapes across the river (Forest, Chaco Savannahs, Pampean steppe). Few species are able to live in the alternately flooded and dry soil. The distribution of each species is strongly conditioned by the water regime in each area of the floodplain, and its location in the topographical gradient of the islands allows us to determine the possibility of colonising the bars and islands of the river course to determine their tolerance to hydrological variations and to foresee the changes that can take place as a result of disturbances in the hydrological regime. Here, we present the occurrence of willow (Salix humboldtiana Willd.) and South American alder (Tessaria integrifolia Ruiz et Pav.) in bars and islands of different topographies in a section of the Paraná River downstream from the confluence of the Paraguay and Paraná rivers. The results indicate that both species have similar niches in relation to hydrological fluctuations. However, willow was significantly more frequent at of 48.49 m a.s.l., while palo bobo reached its highest frequency at 49.29 m a.s.l. The difference between the modes of the distribution curves of each species was 0.80 m. Canopy trees such as willow and palo bobo are adapted to flooded soil conditions for 77.8 and 40% of their respective lives and survive with a long-lasting inundation phase (306 and 366 days, respectively). However, many trees in the Paraná River floodplain died when the flood period extended for more than 1 year.  相似文献   

7.
Aim To determine the degree to which rivers within the south‐eastern US Coastal Plain show a predictable spatial distribution of floodplain tree species along each point bar of river bends in relation to elevation and/or soil texture, as seen on the Bogue Chitto River, Louisiana, USA. Also, to understand spatial patterns of tree species on land created during river‐bend migration, and to interpret which physical characteristics of rivers predict this pattern of vegetation. Location The south‐eastern US Coastal Plain. Methods Ten randomly selected rivers within a portion of the region were studied. At each of 10 river bends per river, a census of trees and shrubs was taken and elevation and soil texture were measured at upstream, mid‐ and downstream locations along the forest–point bar margin. To identify physical characteristics of rivers that are predictive of patterns of tree species along point bars, aerial photographs, hydrographs and field data were analysed. Results Tree species composition varied predictably among the three point bar locations, corresponding to an elevation gradient on each bar, on seven of 10 rivers. Species occupying a given point bar location on one river usually occupied the same location on other rivers, in accordance with species‐elevation associations identified in past studies of floodplain forests. Multivariate analysis of river characteristics suggested that rivers failing to show the expected pattern were those with relatively low stream energy and geomorphic dynamics and/or those with hydrological regimes altered by upstream dams. Main conclusions A distinct pattern of streamside forest community structure is related to fluvial geomorphic processes characterizing many rivers within the south‐eastern US Coastal Plain. Characteristics of rivers required to promote the predicted pattern of tree species include a single, meandering channel with point bars; an intermediate level of stream energy; a natural hydrological regime; and location in a biome where a large number of tree species are capable of colonizing point bars.  相似文献   

8.
We studied egg and larval mortality factors in arctic populations of the bud-galling sawfly, Euura mucronata (Hartig) on three willow species (Salix glauca L., S. phylicifolia L., and S. lapponum L.) and the quality of resources (shoot length of willows) required for egg-laying. The survival was independent of latitude. There was a positive correlation in survival on different willow species among sampling sites, indicating that similar, locally operating factors affected survival. Host plant-based mortality factors were dominant and caused 17.9–48.0% mortality in eggs and 6.6–44.1% mortality in larvae. Parasitoids and inquilines caused relatively low and variable rates of mortality. Parasitoids were absent from several of the northernmost populations, but caused up to 11.0% mortality at southern sites. Mortality caused by inquilines was minor in other areas except in some sites in the Taymyr Peninsula, where it varied from 0 to 23.1%. E. mucronata laid eggs on the longest shoots available. Plant vigour as measured by shoot length decreased toward the north, and densities of galls were positively correlated with plant vigour. The difference in length between galled and ungalled shoots was 2.0- to 4.6-fold. Absence of E. mucronata in the most northern populations of willows was apparently caused by insufficient shoot growth. Short shoots failed to provide sufficient resources for successful development of galls. Our results suggest that the quality of host plants is the main factor determining abundance and distribution of E. mucronata in arctic areas. Received: 10 February 1997 / Accepted: 2 May 1997  相似文献   

9.
1. Riparian plant communities are primarily structured by the hydrological regime of the stream. Models of climate change predict increased temperatures and changed patterns of precipitation that will alter the flow of rivers and streams with consequences for riparian communities. In boreal regions of Europe, stream flows will exhibit earlier spring‐flood peaks of lower magnitude, lower summer flows and higher flows in autumn and winter. We quantified the effects of predicted hydrological change on riparian plant species richness, using four different scenarios for the free‐flowing Vindel River in northern Sweden. 2. We calculated the hydrological niche of vegetation belts by relating the occurrence of species and vegetation belts to data on flood duration for 10 years preceding the vegetation survey. We then used the flood duration predicted for 2071–2100 to estimate expected changes in the extent of each vegetation belt. Using species accumulation curves, we then predicted changes in plant species richness as a result of changes in extent. 3. The two most species‐rich vegetation belts, riparian forest and willow shrub, were predicted to decrease most in elevational extent, up to 39 and 32%, respectively. The graminoid belt below the shrub belt will mainly shift upwards in elevation while the amphibious vegetation belt at the bottom of the riparian zone increases in size. 4. In the Vindel River, the riparian forest and willow shrub zone will lose most species, with reductions of 5–12% and 1–13% per site, respectively, depending on the scenario. The predicted loss from the entire riparian zone is lower, 1–9%, since many species occur in more than one vegetation belt. More extensive species losses are expected in the southern boreal zone for which much larger spring‐flood reductions are projected. 5. With an expected reduction in area of the most species‐rich belts, it becomes increasingly important to manage and protect riparian zones to alleviate other threats, thus minimising the risk of species losses. Restoring river and stream reaches degraded by other impacts to gain riparian habitat is another option to avoid species losses.  相似文献   

10.
Populus nigra L. var betulifolia and Salix alba L. var alba are early successional riparian tree species threatened throughout Continental Europe by significant changes to the natural physical processes governing their natural habitat – geomorphologically active floodplains. River management activities have dramatically altered natural patterns of river flow and rates of sediment delivery along rivers, with possible consequences for the balance between sexual and asexual regeneration strategies in these species. Conservation strategies will benefit from a greater understanding of the ways in which dynamic physical processes on the floodplain influence sexual and asexual recruitment. This paper describes a field survey investigating the relative abundance and spatial distributions of P. nigra and S. alba sexual and asexual recruits during the first years of establishment along a braided gravel bed river. Sexual and asexual recruits were identified by excavation along transects in a wet and a dry field season and distributional differences were described in terms of elevation on the floodplain, local sediment type and exposure to floodwaters. Regeneration was overwhelmingly from seed in the first 2–3 years following recruitment, but poor survival rates among sexual recruits saw a shift in the relative abundance of regeneration strategies over time. In relating hydrological data to recruitment, unseasonal flood disturbances had a negative effect on recruitment from seed and a positive effect on vegetative regeneration. Seedlings were associated with fine sediment deposits and were restricted primarily to low elevations on the flood plain, while asexual recruits had a wider spatial distribution. Certain microsite types were unique to either regeneration strategy.  相似文献   

11.
1. Northern Australia is characterised by a tropical wet–dry climate that regulates the distinctive character of river flow regimes across the region. There is marked hydrological seasonality, with most flow occurring over only a few months of the year during the wet season. Flow is also characterised by high variability between years, and in the degree of flow cessation, or intermittency, over the dry season. 2. At present, the relatively low human population density and demand for water in the region means that most rivers have largely unmodified flow regimes. These rivers therefore provide a good opportunity to understand the role of natural flow variability in river ecosystem structure and processes. 3. This review describes the major flow regime classes characterising northern Australian rivers, from perennial to seasonally intermittent to extremely intermittent, and how these regimes give rise to marked differences in the ecological character of these tropical rivers, particularly their floodplains. 4. We describe the key features of these flow regimes, namely the wet and dry seasons and the transitions between these seasons, and how they regulate the biophysical heterogeneity, primary productivity and movement of biota in Australia’s wet–dry tropical rivers. 5. We develop a conceptual model that predicts the likely hydrological and ecological consequences of future increases in water abstraction (e.g. for agriculture), and suggest how such impacts can be managed so that the distinctive ecological character of these rivers is maintained.  相似文献   

12.
渭河丰、枯水期底栖动物群落特征及综合健康评价   总被引:6,自引:0,他引:6  
殷旭旺  李庆南  朱美桦  宋佳  武玮  徐宗学 《生态学报》2015,35(14):4784-4796
以渭河为研究范例,分别于丰水期(2011年10月)和枯水期(2012年4月)对渭河全流域范围内45个样点的底栖动物群落进行跟踪调查,并在此基础上应用丰、枯水期底栖动物生物完整性评价指数(B-IBI)对渭河流域水生态系统进行综合健康评价。结果表明,渭河流域底栖动物群落结构具有明显的空间异质性,枯水期底栖动物群落结构单一,物种数量、生物量和香农多样性明显少于丰水期,但单位密度差异不显著。综合健康评价结果表明,渭河上游、洛河中上游地区的健康状况较好,而渭河中下游、泾河全流域及洛河下游地区的健康状况较差。相关分析显示,渭河全流域范围内丰水期和枯水期底栖动物群落的B-IBI得分呈现明显的正相关性,表明在不同水文过程时期,渭河全流域大尺度范围内底栖动物群落的生物完整性特征较为一致。在河流丰、枯水期,底栖动物群落结构的变化趋势并对比分析了渭河流域不同区域水生态系统健康水平差异的原因。  相似文献   

13.
Plants may reduce element leakage from submerged mine tailings by phytostabilisation. However, high shoot concentrations of elements might disperse them and could be harmful to grazing animals. The aim of this investigation was to find out which of the three properties; low-accumulation, root accumulation or shoot accumulation of elements, occur in four of the most common wetland species growing on an old submerged mine tailings and if their properties can be determined by a hydroponic experiment. Above- and below-ground parts of Salix (mixed tissue from S. phylicifolia and S. borealis), Carex rostrata, Eriophorum angustifolium, and Phragmites australis were sampled and analysed for Cd, Cu, Zn, Pb and As. Differences in uptake and translocation properties of the same plant species were observed between field-grown plants and plants grown in hydroponics. These differences were probably due to processes in the soil–root interface. Thus, hydroponic screening studies should not be used to find suitable species for vegetation of wet-covered mine tailings. Most species were found to have restricted translocation of elements to the shoot, i.e. they were root accumulators, and only the shoot concentrations of Salix for Cd and Zn and E. angustifolium for Pb might be toxic to grazing animals. Thus, plant establishment on submerged tailings can be a safe method to stabilise the metals.  相似文献   

14.
A total of 261 individuals of the four tropical eel species, Anguilla celebesensis, Anguilla marmorata, Anguilla bicolor pacifica and Anguilla interioris, were collected from 12 locations around Sulawesi Island, Indonesia, to gain knowledge about the riverine distribution of tropical eels. Anguilla marmorata was predominant in the lower reaches of Poso River (94·4% of total eel catch in the sampling area), Poso Lake (93·3%), three small inlet rivers of Tomini Bay (100%) and Laa River (92·3%). Anguilla celebesensis occurred frequently in the inlet rivers of Poso Lake (63·5%). Anguilla bicolor pacifica and Anguilla interioris were rare (1.5 and 0.4%, respectively). Otolith Sr:Ca ratio electron‐probe micro analysis (EPMA) for individual migratory histories revealed that 15 A. celebesensis caught in Poso Lake and its inlet rivers were categorized into 14 river eels (Sr:Ca < 2·5) showing upstream migration seemingly at their elver stage and only one sea eel (Sr:Ca ≥ 6·0) that stayed in the marine habitat for the majority of its life after recruiting to Sulawesi Island before its late upstream migration. In A. marmorata, 19 examined eels from Poso Lake and its inlet rivers were all river eels, while 17 eels from the lower reaches of Poso River were two river eels, six sea eels and nine estuarine eels (2·5 ≤ Sr:Ca < 6·0) that mostly lived in the brackish water. The sex ratio of A. celebesensis was highly skewed towards a dominance of females (99%). In A. marmorata, females were predominant in Poso Lake (95·2%), its inlet rivers (94·7%) and Laa River (100%), while males were more frequent in the lower reaches of Poso River (76·5%) and small inlet rivers of Tomini Bay (94·1%). These results indicate that the riverine distribution pattern of tropical eels differs among species and between sexes.  相似文献   

15.
A seed size–seed number trade-off exists because smaller seeds are produced in greater number but have a lower probability of establishment. This reduced establishment success of smaller-seeded species may be determined by biophysical constraints imposed by scaling rules. Root and shoot diameter, root growth extension rate (R GER) and shoot length at death for dark-grown seedlings are predicted to scale with the cube root of seed embryo and endosperm mass (m). We confirmed this expectation for ten neotropical gap-dependent tree species with an embryo and endosperm dry mass >1 mg. However, for nine smaller seeded species (m < 1 mg) with photoblastic germination, root and shoot diameters were larger than expected, and consequently, R GER was slower than expected. The maximum shoot thrust of seedlings from seeds with masses ≥1 mg was comparable to the estimated force required to displace overlying litter, supporting the hypothesis that photoblastic behaviour only occurs in seeds with insufficient shoot thrust to displace overlying leaves. Using the model soil water, energy and transpiration to predict soil drying in small and large gaps, we showed that: (1) gaps that receive a significant amount of direct sunlight will dry more quickly than small gaps that do not, (2) compared to the wet-season, soil that is already dry at depth (i.e. the dry-season) will dry faster after rainfall (this drying would most likely kill seedlings from small seeds) and (3) even during the wet-season, dry periods of a few days in large gaps can kill shallow-rooted seedlings. We conclude that the smaller the seed, the more vulnerable its seedling would be to both covering by litter and soil drying because it can only emerge from shallow depths and has a slow R GER. Consequently, we suggest that these allometrically related factors contribute to the reduced establishment success of smaller-seeded species that underpins the seed size–seed number trade-off.  相似文献   

16.
The responses of seedling root systems of three species of oaks in California to two experimental soil moisture regimes were studied by comparing lateral root development, root and shoot weights, and root: shoot ratios. In the first soil moisture treatment the taproot was allowed to extend into moist soil throughout the duration of the experiment (control), while in the second treatment (shallow) the taproot grew into a dry substrate below 30 cm of moist soil. The treatments were intended to approximate soil moisture conditions experienced by oak seedlings in the field when deep soil water sources vary in their accessibility (control: accessible, shallow: inaccessible). Lateral root growth of Quercus agrifolia did not increase significantly when the primary root tip died in the shallow treatment, resulting in an overall decrease in the percent of the root system composed of lateral roots. Q. douglasii and Q. lobata increased lateral root weights by 80% and 70%, respectively, on the upper 30 cm of the primary root when the primary root tip died. Q. lobata was the only species that decreased in shoot and root weight (25% and 21%, respectively) with the loss of the root tip, indicating that, unlike the other species, it was dependent on the primary root for maximum growth. The morphological responses of these species correspond with their distributions and also may be a factor that influences their interactions with other species.  相似文献   

17.
Zooplankton of turbid and hydrologically dynamic prairie rivers   总被引:5,自引:0,他引:5  
1. Compared with rivers in more humid, forested ecoregions of eastern and midwestern U.S.A., rivers in semi‐arid grassland of the U.S. Great Plains tend to be relatively shallow, more variable in discharge, and characterised by high suspended sediment loads. Although critical life stages of fish in prairie rivers probably depend at least partially on zooplanktonic food, data on community and distributional patterns of potamoplankton in these widespread ecosystems are almost entirely absent. 2. We examined summer zooplankton distribution in five prairie rivers (Arkansas, Kansas, Platte, Elkhorn, and Niobrara Rivers) spread over six degrees of latitude during 2003–2004. We compared our results from 126 samples with previously collected data from the Ohio and St Lawrence Rivers in forested ecoregions and correlated differences with abiotic environmental conditions. 3. The importance of hydrological retention zones to stream biota has been recently demonstrated for rivers with quasi‐permanent islands and slackwater regions, but the importance of slackwaters formed by ephemeral sandbar islands in prairie rivers is unknown. We evaluated the role of hydrological retention for planktonic rotifers, cladocera, and copepods in the Kansas River during the summer of 2004. 4. Zooplankton assemblages were extremely similar among prairie rivers (Sorensen Dissimilarity Index: mean = 0.07) but moderately disparate for comparisons of prairie versus forested‐basin rivers (mean = 0.50). 5. Total zooplankton densities in prairie rivers (approximately 81 L?1) were intermediate between the Ohio (approximately 92 L?1) and St Lawrence Rivers (approximately 43 L?1), but relative abundances were significantly different. Rotifers represented >99% of zooplankton individuals in grassland rivers, but only approximately 37–68% in other rivers. Rotifer species richness was lower in prairie rivers, but relative abundances of common genera were much less skewed compared with eastern rivers where Polyarthra dominated rotifer assemblages (41–73%). 6. For comparisons among rivers, rotifers were significantly more abundant in turbid rivers, while microcrustaceans were less dense. However, for comparisons within the Kansas River over time, rotifer densities were inversely related to turbidity. We hypothesise that rotifers indirectly benefit from river turbidity because their food competitors (cladocera) and predators (e.g. cyclopoid copepods and visually feeding fish) are relatively more susceptible to suspended sediments. 7. Crustacean densities were positively related to the degree of hydrological retention (negatively to current velocities) throughout the study, but rotifer densities were significantly depressed by current velocities only when river discharge was high, making slackwaters that much more valuable. Ephemeral sandbars may not provide sufficient hydrological retention in time and space to sustain viable crustacean populations, but they are adequate to help sustain growth of rotifer populations.  相似文献   

18.
Summary An efficient system for in vitro micropropagation of Solanum laciniatum Ait. has been established. Shoot induction on leaf explants was most successful on Murashige and Skoog (MS) medium supplemented with 10 μM N6-benzyladenine (BA) and 1 μM α-naphthaleneacetic acid (NAA). BA (13 μM) was optimal for further shoot multiplication, and rooting of separated shoots was achieved on medium without plant growth regulators. At each subculture, 20–25 shoots were obtained on each explant, from which six to eight were suitable for separation and further rooting. Leaf explants grown in vitro were successfully infected by Agrobacterium rhizogenes ATCC 15834. The established hairy root culture was, on the basis of dry weight, more productive when grown on half-strength MS medium than on full-strength MS (3% sucrose) and full-strength MS (6% sucrose) medium. The amount of solasodine-containing glycoalkaloids in hairy roots as measured by a colorimetric method was 0.3–1% of dry weight, which is higher than in the shoot culture (0.5% of dry weight) and lower than in leaves of in vivo-grown plants (1.1–1.4% of dry weight). The amount of solasodine-containing glycoalkaloids in leaves of in vivo-grown plants of S. laciniatum was similar to the related species Solanum aviculare Forst. Both species are morphologically similar, therefore we effectively distinguished them by flow cytometry. The genome size of S. laciniatum was determined as 4.03 pg and the genome size of S. aviculare as 1.69 pg.  相似文献   

19.
Investigations on large canalised rivers, for example the Danube, have shown that transported particulate matter, which is typically inorganic, is predominantly deposited in waters near the river’s main channel. This investigation deals with the lower section of the River Havel (NE Germany), a canalised lowland river with a very flat floodplain. This river is highly polluted by nutrients from urban areas (Berlin) and a long chain of river lakes produces high concentrations of phytoplankton. Due to the high proportion of planktogenic detritus, it was hypothesised that greater quantities of nutrient-rich fine particulate organic matter (FPOM) would be deposited in floodplain waters located further from the main channel than has been reported for large rivers. The total nutrient, P-binding metal (Fe, Al, and Mn), organic and inorganic carbon (TOC, TIC) contents of the upper organic sediment layer (0–4 cm) were analysed in samples collected from 48 floodplain water and river sites. The sediment bulk density, calculated on the basis of dry mass content and loss on ignition, was used to characterise the waters according to the impact of the river current. The results showed that the variability of total phosphorus (TP) was best explained by the variability of total iron (TFe, R2 = 0.52). The floodplain water sediments could clearly be separated into two groups on the basis of the sediment particle size composition, and of the element ratios TOC:TP, TN:TP, primarily TFe:TP. The sediments from impounded river sections and from mouth sections of backwaters (approx. 100–200 m) were characterised by a high proportion particles from the 0.1 to 0.5 mm size fraction and by homogeneous, low TFe:TP, TOC:TP and TN:TP ratios. Sediments from distal sections of backwaters and of oxbow lakes tended to exhibit high element ratios with much higher variability. These results were interpreted as a spatially limited impact of the river on the floodplain water sediments. Contrary to expectation, the phosphorus bound in river seston was predominantly and very homogeneously deposited in the impounded river and mouth sections of backwaters. This implies that the inundation of the floodplain waters during spring floods seems to have no important material impact on the sediments in waters of low hydrological connectivity with the River Havel.  相似文献   

20.
The Australian lungfish, Neoceratodus forsteri, exists as remnant natural populations in two rivers of south-east Queensland, Australia, and several translocated populations. Lungfish habitats have been impacted by agriculture and forestry, alien plants and fish and by river impoundment and regulation of flows. The species has been listed as vulnerable under Australian Commonwealth legislation. A proposal to construct Traveston Crossing Dam on the free-flowing main channel of the upper Mary River could seriously threaten the lungfish. The dam can be stopped by Commonwealth legislation if important populations of lungfish in the Mary River are likely to be significantly impacted by the new dam. This paper assembles evidence that impoundment of the Mary River and regulation of river flows are likely to decrease and fragment important lungfish populations, disrupt the breeding cycle, reduce juvenile recruitment, and isolate and decrease habitat availability/quality to such an extent that the species is likely to decline. Proposed mitigation strategies include fish transfer facilities, provision of flow releases from the dam (environmental flows) to sustain lungfish habitat and breeding downstream, and translocation of hatchery-reared juvenile lungfish into suitable natural habitats. These mitigation efforts may not be sufficient to secure the genetic diversity and long-term viability of lungfish populations in the Mary River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号