首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species richness and density of understory plants were investigated in eight 1 ha plots, distributed one each in undisturbed and disturbed tropical evergreen, semi-evergreen, deciduous and littoral forests of Little Andaman island, India, which falls under one of the eight hottest hotspots of Biodiversity in the world viz. the Indo-Burma. One hundred 1 m−2 quadrats were established in each 1 ha plot, in which all the understory plants (that include herbs, undershrubs, shrubs and herbaceous climbers) were enumerated. The total density of understory plants was 6,812 individuals (851 ha−1) and species richness was 108 species, representing 104 genera and 50 families. Across the four forest types and eight study plots, the species richness ranged from 10 to 39 species ha−1. All the disturbed sites harbored greater number of species than their undisturbed counterparts. Herbs dominated by species (63%) and density (4,259 individuals). The grass Eragrostis tenella (1,860 individuals; IVI 40), the invasive climber Mikania cordata (803; IVI 20) and the shrub Anaxagorea luzonensis (481; IVI 17.5) were the most abundant species. Poaceae, Asteraceae, Acanthaceae, Orchidaceae and Euphorbiaceae constituted the species-rich families represented by 6 species each. The species-area curves attained an asymptote at 0.8 ha level except in sites DD and DL, indicating 1 ha plot is not sufficient to capture all the understory species in disturbed forests. The alien weeds formed about one-fourth of the species richness (31 species; 28%) and density (1,926 individuals; 28.3%) in the study sites, indicating the extent of weed invasion and the attention required for effective conservation of the native biodiversity of the fragile island forest ecosystem.  相似文献   

2.
The great plasticity and diverse reproductive strategies of invasive alien plants are widely assumed to contribute to invasion success, even in extreme areas, often displacing native species. In this context, climate change creates new opportunities for biological invasions. Environmental variability and global warming are two of the climatic processes that may promote invasiveness, since alien species modulate their phenology to succeed under these circumstances. We monitored the phenological development (phenological stage advancement) of the two main invasive alien species: Poa annua L. and Cerastium fontanum Baumg. in the sub‐Antarctic Macquarie Island during the austral summer period along an altitudinal gradient. We found that higher temperatures lead to increased plant height and accelerated phenological development than lower temperatures in P. annua but found no direct evidence of the latter in C. fontanum. However, increased temperature variability negatively affected the phenological development of both species. Interestingly, despite their different reproductive strategy (rapid and impromptu in P. annua, and more synchronic and gradual in C. fontanum), both species prolifically succeeded in producing seeds at all sites showing the great acclimation of these two alien species even in limiting conditions. Since both alien species in Macquarie Island showed larger size and faster phenology at lower altitudes (i.e. milder conditions), this would indicate a great influence of ameliorating abiotic extremes on alien plant invasive capabilities at environmental extremes. Thus, our results warn of the increasing capabilities under climatic warming scenarios for alien plants to reproduce even at such remote ranges. This highlights the need to reinforce calls for special attention to prevent the spread of these kinds of species to other similar sub‐polar areas, where intensive post‐introduction management may be difficult or expensive.  相似文献   

3.
Acacia mearnsii is an introduced Australian acacia in South Africa and has invaded more than 2.5 million ha, primarily establishing in rangeland and riparian areas. Because acacias have the capability to fix N, A. mearnsii invasions may fundamentally change N dynamics in invaded systems. This study compares biological N2-fixation in the alien invasive A. mearnsii and the native A. caffra growing in a grassland riparian zone in the Komati Gorge Reserve, Mpumalanga, South Africa. A 15N natural abundance field survey suggested that both mature alien and native acacias fix N under current conditions in the riparian zone. Significantly depleted δ15N was observed in both acacias relative to reference species, although variation in δ15N was not correlated with N concentrations. Calculated contributions of N2-fixation (%Ndfa) suggest that alien acacias fix significantly more of their N than native acacias (~75 ± 5% SE and 53 ± 9% SE, respectively). There was a larger variation in δ15N and %Ndfa in the native acacia, suggesting relatively high plasticity in its N2-fixation contributions. This plasticity was interpreted as a facultative N2-fixation strategy for the native acacia, while the N2-fixation strategy of the alien acacia remained unclear. Our results emphasize the importance of potentially elevated N inputs through N2-fixation by invasive legumes in invaded landscapes. Furthermore, they suggest that N2-fixation by invasive acacias may not respond to fine-scale patchiness in soil N in the same manner as native acacias, making them potential contributors to N excess in Southern Africa.  相似文献   

4.
Successfully managing invasive plants in natural systems is extremely difficult. Recently however, progress has been made with an approach focused on changing ecosystem processes through the disturbance regime. We performed a large-scale (3 ha) full-factorial field experiment in densely invaded woodland in Hluhluwe-iMfolozi Park, a savanna reserve in South Africa, to study the effect of fire on the control of the pan-tropical invasive exotic shrub Chromolaena odorata in combination with the conventional method, i.e. manual clearing and herbicide application. We show how fire interacted with the conventional clearing of C. odorata and induced an intense canopy fire that caused a shift from woodland to grassland. After 2.5 years of monitoring, grasses were still dominant and re-invasion minimal. It is important to note that fire without prior clearing did not have the same effect and was not successful in reducing densities of C. odorata. An integrated control practice targeting the species with mechanical and chemical methods, while simultaneously targeting its habitat through fire, effectively controlled dense C. odorata thickets during the course of the experiment. However, this approach transformed regular surface fires into high-intensity canopy fires that are rare in savannas. We discuss how this altered fire regime may threaten native habitats, including fire-sensitive forest patches and riverine woodlands within the savanna mozaic. This is an important dilemma for managers that should not be overlooked and asks for long-term data on the impact of control programs on the native vegetation.  相似文献   

5.
The reintroduction of pre-European fire regimes has allowed the entry of many invasive plant species into fire-dependant ecosystems of North America. However, the environmental factors that favor the post-fire establishment of these species across complex landscapes are not well understood and the initial establishment of invasive species does not necessarily result in long-term persistence. To evaluate the post-fire establishment and persistence of disturbance-dependent invasive plants, we studied the invasion of Paulownia tomentosa (princess tree, an early-successional species introduced from Asia) across three burns in the southern Appalachian Mountains. Based upon classification tree analysis, the presence/absence of P. tomentosa 2 years after burning was most strongly related to the cover of residual vegetation, topographic shading, and moisture availability. Spatial application of classification tree models to repeated survey data showed that P. tomentosa established across a wide range of microsites 2 years after burning. However, predicted habitat for P. tomentosa decreased by 63% 4 years after fire and by 73% 6 years after fire. Following its initial widespread establishment, P. tomentosa only persisted on xeric and exposed topographic positions that experienced high intensity burning. However, the sites where it persisted include rare community types that contain two endangered plant species that depend upon fire for successful reproduction. The control of P. tomentosa on these ecologically important sites may require special attention from land managers.  相似文献   

6.
Fynbos is a vegetation type in the Cape Floral Region (CFR), at the southern tip of Africa. Portions of the CFR are recognised as a ‘serial’ World Heritage site and acclaimed by UNESCO as the world’s ‘hottest hot spot’ for plant species richness and endemism. Habitat degradation and species losses through human intrusion in the CFR include transformations brought about by introduced invasive alien tree species. Since 1970, ten invasive tree species in the fynbos biome have been subjected to biological control, namely: six Acacia species and Paraserianthes lophantha (Mimosaceae), Hakea sericea (Proteaceae) and Leptospermum laevigatum (Myrtaceae), all from Australia, and Sesbania punicea (Fabaceae) from South America. A total of 19 species have been deployed as biological control agents, including nine weevil species (eight Curculionidae and one species in the family Brentidae: Apioninae), a seed-feeding moth species (Lepidoptera: Carposinidae), two species of bud-gallers (Hymenoptera: Pteromalidae), two species of flower-gallers (Diptera: Cecidomyiidae), and a gall-forming rust fungus (Uredinales: Pileolariaceae). Most of these agents primarily reduce seed production, directly or indirectly, but some also cause die-back and mortality of their host plants. The overall result, often in combination with mechanical clearing and herbicide applications, has been a substantial decline in the abundance and/or aggressiveness of most of the targeted host-plants. In this review, four representative but contrasting case studies are used to show that biological control is an indispensible supplement to other management practices for long-term conservation of the remnants of the fynbos biome.  相似文献   

7.
Forest loss and fragmentation drive widespread declines in biodiversity. However, hummingbirds seem to exhibit relative resilience to disturbance, characterized by increasing abundance alongside declining species richness and evenness. Yet, how widespread this pattern may be, and the mechanisms by which it may occur, remain unclear. To fill in this knowledge gap, we investigated habitat- and site-level patterns of diversity, and community composition of hummingbirds between continuous forest (transects n = 16 in ~3500 ha) and more disturbed surrounding fragments (n = 39, 2.5–48.0 ha) in the Chocó rain forest of northwestern Ecuador. Next, we assessed within-patch and patch-matrix characteristics associated with hummingbird diversity and composition. We found higher hummingbird species richness in forest fragments relative to the continuous forest, driven by increased captures of rare species in fragments. Community composition also differed between continuous forest and fragments, with depressed evenness in fragments. Increased canopy openness and density of medium-sized trees correlated with hummingbird diversity in forest fragments, although this relationship became nonsignificant after applying false discovery rate (p < .01). Higher species richness in fragments and higher evenness in the continuous forest highlight the complex trade-offs involved in the conservation of this ecologically important group of birds in changing Neotropical landscapes. Abstract in Spanish is available with online material.  相似文献   

8.
The spread of invasive alien plants into natural habitats is of growing global concern. Several studies have investigated the role that avian frugivores play in the dispersal of these seeds and their effects on germination success. Fruit bats have however received little attention as important dispersal agents of invasive alien plants, despite their recognized role as long distance dispersal agents of various native flora. We investigated whether Wahlberg’s epauletted fruit bats, Epomophorus wahlbergi, would positively influence the germination of seeds of invasive alien plants. These fruit bats were fed fruits of four invasive alien plant species—Psidium guajava, Melia azedarach, Eriobotrya japonica, and Morus alba. Epomophorus wahlbergi were able to process more fruit per gram body mass than birds have been observed to do. Spat and de-pulped control seeds had similar germination success and germinated at approximately the same time for most species. While seeds retained in whole fruit had significantly less germination success than spat seeds for all species, except M. azedarach, they mostly germinated at approximately the same time. Epomophorus wahlbergi can swallow small seeds (< 2 mm), while seeds larger than this are generally spat out. Large fruit are usually carried away to feeding roosts where seeds are dropped, thereby dispersing seeds and fruits which are too large for some bird species to ingest. Epomophorus wahlbergi should not be underestimated as dispersers of these invasive alien plants as they consume proportionally large amounts (0.62 ± 0.09 to 0.99 ± 0.11 g.g−1 body mass) of fruit, except for M. azedarach, and positively affect their seed germination rates.  相似文献   

9.
10.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

11.
Comparative studies of invasive, noninvasive alien, and native congenic plant species can identify plant traits that drive invasiveness. In particular, functional traits associated with rapid growth rate and high fecundity likely facilitate invasive success. As such traits often exhibit high phenotypic plasticity, characterizing plastic responses to anthropogenic environmental changes such as eutrophication and disturbance is important for predicting the invasive success of alien plant species in the future. Here, we compared trait expression and phenotypic plasticity at the species level among invasive, noninvasive alien, and native Bidens species. Plants were grown under nutrient addition and competition treatments, and their functional, morphological, and seed traits were examined. Invasive B. frondosa exhibited higher phenotypic plasticity in most measured traits than did the alien noninvasive B. pilosa or native B. bipinnata. However, differential plastic responses to environmental treatments rarely altered the rank of trait values among the three Bidens species, except for the number of inflorescences. The achene size of B. frondosa was larger, but its pappus length was shorter than that of B. pilosa. Two species demonstrated opposite plastic responses of pappus length to fertilization. These results suggest that the plasticity of functional traits does not significantly contribute to the invasive success of B. frondosa. The dispersal efficiency of B. frondosa is expected to be lower than that of B. pilosa, suggesting that long‐distance dispersal is likely not a critical factor in determining invasive success.  相似文献   

12.
The spatial distribution of invasive alien plants has been poorly documented in California. However, with the increased availability of GIS software and spatially explicit data, the distribution of invasive alien plants can be explored. Using bioregions as defined in Hickman (1993 ), I compared the distribution of invasive alien plants (n = 78) and noninvasive alien plants (n = 1097). The distribution of both categories of alien plants was similar with the exception of a higher concentration of invasive alien plants in the North Coast bioregion. Spatial autocorrelation analysis using Moran's I indicated significant spatial dependence for both invasive and noninvasive alien plant species. I used both ordinary least squares (OLS) and spatial autoregressive (SAR) models to assess the relationship between alien plant species distribution and native plant species richness, road density, population density, elevation, area of sample unit, and precipitation. The OLS model for invasive alien plants included two significant effects; native plant species richness and elevation. The SAR model for invasive alien plants included three significant effects; elevation, road density, and native plant species richness. The SAR model for noninvasive alien plants resulted in the same significant effects as invasive alien plants. Both invasive and noninvasive alien plants are found in regions with low elevation, high road density, and high native‐plant species richness. This is in congruity with previous spatial pattern studies of alien plant species. However, the similarity in effects for both categories of alien plants alludes to the importance of autecological attributes, such as pollination system, dispersal system and differing responses to disturbance in the distribution of invasive plant species. In addition, this study emphasizes the critical importance of testing for spatial autocorrelation in spatial pattern studies and using SAR models when appropriate.  相似文献   

13.
This study is a first attempt at a holistic economic evaluation of South African endeavours to manage invasive alien plants using biological control. Our focus was on the delivery of ecosystem services from habitats that are invaded by groups of weeds, rather than by each individual weed species. We established the net present value of the weed biological control efforts, and derived benefit:cost ratios by comparing this value (a cost) to the estimated value of ecosystem services protected by weed biological control. We identified four major functional groupings of invading alien plants, and assessed their impact on water resources, grazing and biodiversity. We estimated the area that remained free of invasions due to all historic control efforts in South Africa, and the proportion that remained free of invasion as a result of biological control (which was initiated in 1913). The estimated value of potential ecosystem services amounted to 152 billion South African rands (ZAR—presently, about US$ 19.7 billion) annually. Although an estimated ZAR 6.5 billion was lost every year due to invading alien plants, this would have amounted to an estimated additional ZAR 41.7 billion had no control been carried out, and 5–75% of this protection was due to biological control. The benefit:cost ratios ranged from 50:1 for invasive sub-tropical shrubs to 3,726:1 for invasive Australian trees. Benefit:cost ratios remained positive and our conclusion, that biological control has brought about a considerable level of protection of ecosystem services, remains robust even when our estimates of the economic impacts of key variables (i.e. sensitivity analyses of indeterminate variables) were substantially reduced.  相似文献   

14.
Ecological effects of invasive alien insects   总被引:1,自引:0,他引:1  
A literature survey identified 403 primary research publications that investigated the ecological effects of invasive alien insects and/or the mechanisms underlying these effects. The majority of these studies were published in the last 8 years and nearly two-thirds were carried out in North America. These publications concerned 72 invasive insect species, of which two ant species, Solenopsis invicta and Linepithema humile, accounted for 18% and 14% of the studies, respectively. Most publications investigated effects on native biodiversity at population or community level. Genetic effects and, to a lesser extent, effects on ecosystem services and processes were rarely explored. We review the effects caused by different insect invaders according to: their ecosystem roles, i.e. herbivores, predators, parasites, parasitoids and pollinators; the level of biological organisation at which they occur; and the direct and indirect mechanisms underlying these effects. The best documented effects occur in invasive ants, Eurasian forest herbivores invasive in North America, and honeybees. Impacts may occur through simple trophic interactions such as herbivory, predation or parasitism. Alien species may also affect native species and communities through more complex mechanisms such as competition for resources, disease transmission, apparent competition, or pollination disruption, among others. Finally, some invasive insects, particularly forest herbivores and ants, are known to affect ecosystem processes through cascading effects. We identify biases and gaps in our knowledge of ecological effects of invasive insects and suggest further opportunities for research. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Success of biological control programs is commonly assessed by studying the direct negative impacts of released agents on the target invasive species. Very few quantitative studies have focused on the indirect positive effects on native biodiversity. In this study, we monitored the response of the plant community (both native and alien species) in permanent plots located in four different sites in montane rainforests of the tropical island of Tahiti (South Pacific) severely invaded over decades by the alien invasive tree Miconia calvescens DC (Melastomataceae), after the release of a defoliating fungal pathogen Colletotrichum gloeosporioides f. sp. miconiae Killgore & L. Sugiyama. Results of five years of monitoring showed that total native and endemic species richness and plant cover increased in all sites and plots. Partial defoliation of miconia canopy trees (between 6% and 36%) led to significant recruitment of light-demanding pioneer species, but also to the appearance of some semi-shade and shade tolerant rare endemic species. Native ferns and angiosperms remained dominant (ca. 80%) in the forest understorey during the monitoring period. Colonization by a small number of alien plant species occurred in one permanent plot located at the lower elevation. We conclude that biological control may be considered a tool for partial habitat restoration and recovery of native and endemic species, but long-term monitoring is needed to confirm the stability and resilience of the “novel plant assemblage”.  相似文献   

16.
Non-timber forest products (NTFP) represent culturally and economically important resources for millions of people worldwide. Although many NTFP are harvested from disturbed habitats and therefore subject to multiple pressures, few quantitative studies have addressed this issue. Similarly few NTFP studies have assessed seasonal variation in demographic rates even though this can confound harvest effects. In Hawaiȁ8i, the wild-gathered ferns, Microlepia strigosa and Sphenomeris chinensis, represent highly important cultural resources but declining populations have led to conservation concerns. Both ferns are harvested from disturbed, alien-dominated forests and contemporary Hawaiian gathering practices often consist of harvest and concurrent weeding of alien invasive species. We assessed the effects of concurrent frond-harvest and alien species weeding on frond structure, density, and rates of production by comparing experimentally harvested vs. control plots, and documented relationships between frond demographic patterns and precipitation. Gathering practices had no impact on frond density of either species or on most other demographic parameters over the short term. Exceptions included a significant decrease in the density of the longest S. chinensis fronds and a significant decrease in M. strigosa frond production when fronds were gathered without alien weeding. However, seasonal and annual changes in frond density and production occurred across all plots of both species and were significantly correlated with precipitation. The relatively low harvest effects for both species are likely due to several factors including short frond longevity and the strict criteria used by gatherers to select harvestable fronds. The potential for sustainable harvest in the context of alien-dominated forests is discussed.  相似文献   

17.
Although the common carp (Cyprinus carpio), an invasive benthic fish from Eurasia, has long been strongly implicated in the disappearance of vegetative cover and reduced waterfowl abundance in North American shallow lakes, the details of this relationship are obscure. This study documented ecological changes in a recently restored shallow lake (Hennepin and Hopper Lakes, IL, USA) at a time that it was experiencing a large increase in its carp population. We estimated the abundance and biomass of carp 7 years after this lake had been restored and then back-calculated carp population size across time while examining changes in the lake’s plant and waterfowl communities. We found that the biomass of carp remained below ~30 kg/ha for 5 years following restoration, but then increased to ~100 kg/ha in the sixth year following a strong recruitment event. Although a carp biomass of <30 kg/ha had no discernible effects on vegetative cover (which exceeded 90%) or waterfowl (which exceeded 150,000 individuals during fall censuses), the increase to 100 kg/ha was associated with a ~50% decrease in both vegetative cover and waterfowl. A further increase in carp biomass to over 250 kg/ha during the seventh year coincided with a decrease in the vegetative cover to 17% of the lake’s surface and a decline in waterfowl use to ~10% of its original value. These data suggest that the common carp is extremely damaging to the ecological integrity of shallow lakes when its density exceeds ~100 kg/ha. Since the biomass of carp in Midwestern shallow lakes commonly exceeds this value by 3–4 times, it seems likely that carp are responsible for the large-scale habitat deterioration described in many of these ecosystems. Handling editor: J. Cambray  相似文献   

18.
随着经济全球化快速发展,外来物种入侵危害日益严重。“十三五”时期,我国针对当前面临的重大外来物种入侵威胁,按照基础前沿、共性关键技术与重大产品研发、典型应用示范研究3个层面,部署了一系列科技项目,取得了一批重大科研成果:阐明了入侵物种的入侵机理和进化机制,以及入侵植物与脆弱生态系统互作的调控机制;建立了潜在农业入侵生物信息分析平台,新发外来入侵物种的风险预测与评估模型,重大外来入侵物种的快速检测识别与监测预警技术,以及综合防控技术体系;围绕豚草、空心莲子草、苹果蠹蛾、番茄潜叶蛾、甜菜孢囊线虫等危害特点,开展全程防控技术应用示范。“十三五”期间,基本实现了潜在入侵物种数据量持续丰富完善,新发/突发入侵物种应急防控技术产品有效储备能力增强,重大入侵物种综合防控技术体系逐步健全的良好格局。面向“十四五”,建议继续支持外来物种入侵防控研究,推动“关口前移、疆域监控、灭除阻截、联控减灾”等核心技术的研发,实现有效防控生物入侵的重大目标。  相似文献   

19.
1. Rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) are widespread and invasive salmonids with important lethal effects as predators, although indirect effects are also possible. We used stable isotope analyses (δ15N, δ13C) to explore how the density of invasive trout in 25 Patagonian lakes alters the trophic niche (TN) of a widespread native fish, Galaxias platei (Galaxiidae). We also explored how the density of the galaxiid influences the TN of invasive trout. 2. We quantified two aspects of the TN: (i) the proportion of littoral carbon (PL) and (ii) trophic height (TH) (i.e. the ‘height’ at which the fish feeds in the food web). We related these measures of TN in a given species to the density of other species (as estimated by catch‐per‐unit‐effort). 3. As G. platei body size increased, their PL increased (increasing littoral feeding) in several lakes. However, none of the fish species investigated showed changes in PL with increasing density of the other fish species. TH increased with body size in all three species. In addition, the TH of large G. platei declined with increasing trout density and, reciprocally, the TH of large S. trutta decreased with decreasing G. platei density. 4. The reciprocal effects of native and the invasive fish on TH were as large as a shift of one trophic level. This pattern is consistent with an exhaustion of galaxiid prey for both piscivorous G. platei and S. trutta in lakes with high trout density. 5. These finding support the suggested management strategy of culling trout from overpopulated lakes, which should simultaneously protect native fish and enhance a lucrative sport fishery for large trout.  相似文献   

20.
Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high‐density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar‐hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig–wild boar ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号