首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The human FUT7 gene codes for the alpha1,3-fucosyltransferase VII (Fuc-TVII), which is involved in the biosynthesis of the sialyl Lewis x (SLe(x)) epitope on human leukocytes. The FUT7 gene has so far been considered to be monomorphic. Neutrophils isolated from patients with ulcerative colitis were examined for apparent alterations in protein glycosylation patterns by Western blot analysis using monoclonal antibodies directed against SLe(x) and SLe(x)-related epitopes. One individual showed lower levels of SLe(x) expression and an elevated expression of CD65s compared to controls. The coding regions of the FUT7 gene from this individual were cloned, and a G329A point mutation (Arg(110) --> Gln) was found in one allele, whereas the other FUT7 allele was wild type. No Fuc-TVII enzyme activity was detected in COS-7 cells transiently transfected with the mutated FUT7 construct. The FUT7 Arg(110) is conserved in all previously cloned vertebrate alpha 1,3-fucosyltransferases. Polymerase chain reaction followed by restriction enzyme cleavage was used to screen 364 unselected Caucasians for the G329A mutation, and a frequency of < or =1% for this mutation was found (3 heterozygotes). Genetic characterization of the family members of one of the additional heterozygotes identified one individual carrying the G329A mutation in both FUT7 alleles. Peripheral blood neutrophils of this homozygously mutated individual showed a lowered expression of SLe(x) and an elevated expression of CD65s when analyzed by Western blot and flow cytometry. The homozygous individual was diagnosed with ulcer disease, non-insulin-dependent diabetes, osteoporosis, spondyloarthrosis, and Sj?gren's syndrome but had no history of recurrent bacterial infections or leukocytosis.  相似文献   

5.
6.
7.
8.
The pCMV4 plasmid containing the cancer-promoting gene, c-erbB2/neu, was cotransfected into the human hepatocarcinoma cell line 7721 with the pcDNA3 vector, which contains the 'neo' selectable marker. Several clones showing stable expression of c-erbB2/neu were established and characterized by determination of c-erbB2/neu mRNA and its encoded protein p185. Expression of Lewis antigens and alpha1,3-fucosyltransferases and the biological behavior of 7721 cells after c-erbB2/neu transfection were studied using mock cells transfected with the vectors pCMV4 and pcDNA3 as controls. SLe(x) expression on the surface of mock cells was high, whereas expression of SDLe(x), Lex and SLe(a) was absent or negligible. This is compatible with the abundant expression of alpha1,3-fucosyltransferase VII, very low expression of alphafucosyltransferase III/VI, and almost absent expression of alpha1,3-fucosyltransferase IV in the mock cells. After transfection of c-erbB2/neu, expression of SLe(x) and alpha1,3-fucosyltransferase VII were simultaneously elevated, but that of alphafucosyltransferase III/VI was not altered. The expression of both SLe(x) and alpha1,3-fucosyltransferase VII correlated positively with the expression of c-erbB2/neu in different clones, being highest in clone 13, medium in clone 6, and lowest in clone 7. In addition, the adhesion of 7721 cells to human umbilical vein endothelial cells (HUVECs) or P-selectin, as well as cell migration and invasion, were increased in c-erbB2/neu-transfected cells. These increases also correlated positively with the expression intensities of c-erbB2/neu, SLe(x) and alpha1,3-fucosyltransferase VII in the different clones, whereas cell adhesion to fibronectin correlated negatively with these variables. mAbs to SLe(x) (KM93) and SDLe(x) (FH6) significantly and slightly, respectively, abolished cell adhesion to HUVECs or P-selectin and cell migration and invasion. mAbs to SDLe(x) and SLe(a) did not suppress cell adhesion to HUVECs nor inhibit cell migration and invasion. Transfection of alpha1,3-fucosyltransferase VII cDNA into 7721 cells showed similar results to transfection of c-erbB2/neu, and the increased adhesion to HUVECs, cell migration, and invasion were also inhibited significantly by KM93 and slightly by FH6. These results indicate that expression of alpha1,3-fucosyltransferase VII and its specific product, SLe(x), and their capacity for cell adhesion, migration and invasion are closely related. Therefore, the c-erbB2/neu gene is proposed to be a metastasis-promoting gene, and its effects are at least partially mediated by the increased expression of alpha1,3-fucosyltransferase VII and SLe(x).  相似文献   

9.
Three dimensional structures of sialyl Lewis(x) (SLe(x)) in aqueous solution and bound to selectinE are described based on an exhaustive conformational analysis and several long molecular dynamics simulations using different glycosidic regions as starting conformations. It appears from this study that when the oligosaccharide is free in solution the NeuNAcalpha(2-3)Gal segment favors glycosidic conformation in three different regions in the (Phi,Psi) plane with propensity of populations in the ratio 1:8:1. Each one of these structures is characteristically stabilized by specific hydrogen bonding interaction between NeuNAc and Gal. On the other hand, the Gal-GlcNAc-Fuc segment can exist in four different conformational states. Based on the topology of SLe(x) we are able to predict that out of all the allowed conformations in solution only two of these structures possess a geometry that would fit without steric clashes into the binding location of selectinE. In both of these binding modes, segment Gal-GlcNAc-Fuc adopts a unique conformation. The only difference between the two SLe(x) conformers that can successfully bind to selectinE is given by two possible regions in glycosidic space in the fragment NeuNAcalpha(2-3)Gal. A large conformational departure from the crystallographic data is observed for two lysine residues at the binding site of selectinE. These two residues play an important role when SLe(x) binds selectinE in aqueous solution. These findings help reconcile the X-ray data, in which these residues appear to be 1 nm away from SLe(x), with recent liquid NMR data reporting couplings between these protein residues and the sugar.  相似文献   

10.
11.
12.
A glycosphingolipid that reacted positively to anti-stage-specific embryonic antigen-1 (SSEA-1) antiserum accumulated in human lens in association with aging and senile cataract formation. Since this antiserum recognizes Lewis(x) (Le(x)) structure, Gal beta 1-4(Fuc alpha 1-3)GlcNAc-, which is a typical tumor-associated and differentiation-related saccharide chain, the lens glycolipid was predicted to be a Lex antigen. The glycolipid purified from cataractous lens tissues was indeed a Lex glycolipid, Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-3Gal beta 1- 4Glc beta 1-1 ceramide. Enhanced expression of the Lex glycolipid may affect the organization of lens plasma membranes through Le(x)-Le(x) interactions, as suggested for compaction in mouse preimplantation embryos and embryonic teratocarcinomas, resulting in lens opacification, namely cataract.  相似文献   

13.
The effect of insulin on cancer metastatic potential was studied in a human hepatocarcinoma cell line, H7721. Cell adhesion to human umbilical vein endothelial cells (HUVECs) and laminin as well as chemotactic cell migration and invasion were selected as the indices of metastasis-related phenotypes for assessment of metastatic potential ex vivo. The results indicated that insulin enhanced all of these metastasis-related phenotypes. After the cells were treated with specific inhibitor of PI3K (LY294002) or transfected with antisense cDNA of PKB (AS-PKB), all of the above phenotypes were attenuated, and they could not be significantly stimulated by insulin, indicating that the insulin effect on metastatic potential was mediated by PI3K and PKB. Only the monoclonal antibody to the sialyl Lewis X (SLe(x)), but not antibodies to other Lewis antigens, significantly blocked the cell adhesion to HUVECs, cell migration and invasion, suggesting that SLe(x) played a crucial role in the metastatic potential of H7721 cells. The upregulation of cell surface SLe(x) and alpha-1,3-fucosyltransferase-VII (alpha-1,3 Fuc T-VII, enzyme for SLe(x) synthesis) was also mediated by PI3K and PKB, since LY294002 and AS-PKB also reduced the expressions of SLe(x) and alpha-1,3 FucT-VII, and attenuated the response to insulin. Furthermore, the alterations in the expressions of PKB protein and activity were correlated to the changes of metastatic phenotypes and SLe(x) expression. Taken together, the insulin/PKB signalling pathway participated in the enhancement of metastatic potential of H7721 cells, which was mediated by the upregulation of the expression of SLe(x) and alpha-1,3 FucT-VII.  相似文献   

14.
GM3-synthase, also known as sialyltransferase I (ST-I), catalyzes the transfer of a sialic acid residue from CMP-sialic acid onto lactosylceramide to form ganglioside GM3. In order to clone this enzyme, as well as other sialyltransferases, we developed an approach that we termed combinatorial PCR. In this approach, degenerate primers were designed on the basis of conserved sequence motifs of the ST3 family of sialyltransferases (STs). The nucleotide sequence of the primers was varied to cover all amino acid variations occurring in each motif. In addition, in some primers the sequence was varied to cover possible homologous substitutions that are absent in the available motifs. A panel of cDNA from 12 mouse and 8 human tissues was used to enable cloning of tissue- and stage-specific sialyltransferases. Using this approach, the fragments of 11 new putative sialyltransferases were isolated and sequenced so far. Analysis of the expression pattern of a particular sialyltransferase across the panel of cDNA from the different tissues provided information about the tissue specificity of ST expression. We chose two new ubiquitously expressed human and mouse STs to clone full-length copies and to assay for GM3-synthase activity. One of the STs, which exhibited the highest homology to ST3 Gal III, showed activity toward lactosylceramide (LacCer) and was termed ST3 Gal V according to the suggested nomenclature [1]. The other ubiquitously expressed sialyltransferase was termed ST3Gal VI. All isolated sialyltransferases were screened for alternatively spliced forms (ASF). Such forms were found for both human ST3Gal V and ST3Gal VI in human fetal brain cDNA library. The detailed cloning strategy, functional assay, and full length cDNA and protein sequences of GM3 synthase (ST3Gal V, or ST-I) are presented.  相似文献   

15.
16.
BLAST analysis of the human and mouse genome sequence databases using the sequence of the human CMP-sialic acid:beta-galactoside alpha-2,6-sialyltransferase cDNA (hST6Gal I, EC2.4.99.1) as a probe allowed us to identify a putative sialyltransferase gene on chromosome 2. The sequence of the corresponding cDNA was also found as an expressed sequence tag of human brain. This gene contained a 1590 bp open reading frame divided in five exons and the deduced amino-acid sequence didn't correspond to any sialyltransferase already known in other species. Multiple sequence alignment and subsequent phylogenic analysis showed that this new enzyme belonged to the ST6Gal subfamily and shared 48% identity with hST6Gal-I. Consequently, we named this new sialyltransferase ST6Gal II. A construction in pFlag vector transfected in COS-7 cells gave raise to a soluble active form of ST6Gal II. Enzymatic assays indicate that the best acceptor substrate of ST6Gal II was the free disaccharide Galbeta1-4GlcNAc structure whereas ST6Gal I preferred Galbeta1-4GlcNAc-R disaccharide sequence linked to a protein. The alpha2,6-linkage was confirmed by the increase of Sambucus nigra agglutinin-lectin binding to the cell surface of CHO transfected with the cDNA encoding ST6Gal II and by specific sialidases treatment. In addition, the ST6Gal II gene showed a very tissue specific pattern of expression because it was found essentially in brain whereas ST6Gal I gene is ubiquitously expressed.  相似文献   

17.
The mouse genes encoding beta-galactoside alpha2, 3-sialyltransferases-Siat4 (ST3Gal I), Siat5 (ST3Gal II), Siat3 (ST3Gal III), and Siat4c (ST3Gal IV)-were isolated and characterized. Siat4 and Siat5 comprise 8.4 and 14 kb, respectively, and are composed of six exons each. The genomic structures of the two genes were similar. Siat3 and Siat4c comprise over 100 and 9.7 kb, respectively, and are composed of 12 and 10 exons, respectively. Although the genomic sizes of these genes differ, some of their exon structures are significantly similar. These results suggest that the gene pair Siat4 and Siat5 arose from a common ancestral gene, as did the two genes Siat3 and Siat4c.  相似文献   

18.
We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.  相似文献   

19.
The substrate specificity of an alpha2,3-sialyltransferase (v-ST3Gal I) obtained from myxoma virus infected RK13 cells has been determined. Like mammalian sialyltransferase enzymes, the viral enzyme contains the characteristic L- and S-sialyl motif sequences in its catalytic domain. Analysis of the deduced amino acid sequences of cloned sialyltransferases suggests that v-ST3Gal I is closely related to mammalian ST3Gal IV. v-ST3Gal I catalyzes the transfer of sialic acid from CMP-NeuAc to Type I (Galbeta1-3GlcNAcbeta) II (Galbeta1-4GlcNAcbeta) and III (Galbeta1-3GalNAcbeta) acceptors. In addition, the viral enzyme also transfers sialic acid to the fucosylated acceptors Lewis(x) and Lewis(a). This substrate specificity is unlike any sialyltransferases described to date, though it is most comparable with those of mammalian ST3Gal IV enzymes. The products from reactions with fucosylated acceptors were characterized by capillary zone electrophoresis, (1)H-NMR spectroscopy and mass spectrometry. They were shown to be 2,3-sialylated Lewis(x) and 2,3-sialylated Lewis(a), respectively.  相似文献   

20.
Higai K  Miyazaki N  Azuma Y  Matsumoto K 《FEBS letters》2006,580(26):6069-6075
We previously demonstrated that human hepatocellular carcinoma-derived HuH-7 cells stimulated with interleukin-1beta (IL-1beta) produce alpha(1)-acid glycoprotein (AGP) with increased amounts of sialyl Lewis X (sLeX) antigen, although the mechanism remained obscure. Here, we report our investigation of the mechanism. sLeX expression on HuH-7 cells was induced 2.5 times more after 48 h stimulation with 100 U/mL IL-1 beta compared with control, as indicated by anti-sLeX antibody binding. Furthermore, expression of 2,3-sialylated N-acetyllactosamine increased gradually up to 48 h after IL-1 beta stimulation; this preceded the increase in sLeX expression. Increases in alpha 2,3-sialyltransferase activity also preceded increases in alpha1,3-fucosyltransferase activity. Furthermore, mRNA levels of ST3Gal IV, FUT IV and VI in HuH-7 cells stimulated with IL- 1beta were increased at 2-4 h, while increases in FUT VI mRNA level occurred gradually after 24 h. IL-1 beta-induced sLeX expression on HuH-7 cells was suppressed by transfection of gene-specific small interference RNAs against FUT VI and ST3Gal IV but not against FUT IV and ST3Gal III. These data results that IL-1 beta induces expression of sLeX on HuH-7 cells by enhanced expression of FUT VI and ST3Gal IV gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号