首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The product of the protooncogenic ras gene (p21N ras) exhibits a weak GTPase activity. A significant increase in the GTPase activity associated with p21N ras protein was obtained by using glycerol in the assay mixture. Of the several metal ions tested, only Mg++ and Mn++ are effective divalent cations that support the GTPase activity of p21N ras protein. p21N ras protein exhibits higher GTPase activity and yields higher [3H] GDP binding in the presence of MnCl2 than with MgCl2. Optimal GTPase and [3H] GDP binding are obtained at micromolar concentrations of MgCl2 or MnCl2. Concentrations in the millimolar range of either MgCl2 or MnCl2 are inhibitory to the GTPase activity, whereas [3H] GDP binding was not affected.  相似文献   

2.
The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.  相似文献   

3.
Nucleosidediphosphate (NDP)-kinase-associated proteins from rIL-2-treated mouse NK cells have been biochemically characterized. The associated proteins could be separated from partially purified NDP-kinases by the 5-25% glycerol density gradient centrifugation method after treatment with 6 M urea in the presence of 1 mM EDTA. The associated proteins (approx. Mr 20,000) were defined as GTP binding proteins, since only [alpha-32P]GTP was bound to these proteins in the presence of 5 mM Mg2+ at 37 degrees C. We also found that these GTP binding proteins hydrolyzed only GTP in the presence of 5 mM Mg2+. The data presented here for: GTP specific binding activity; GTPase activity; and molecular size (approx. Mr 20,000) of the NDP-kinase-associated GTP binding proteins are similar to those reported for ras oncogene products (p21 proteins).  相似文献   

4.
In the present studies, we have purified a novel small Mr GTP-binding protein, designated as smg p21, to near homogeneity from bovine brain crude membranes, isolated the complementary DNA (cDNA) of this protein from a bovine brain cDNA library, determined the complete nucleotide and deduced amino acid sequences, and characterized the kinetic properties. The cDNA of smg p21 has an open reading frame encoding a protein of 184 amino acids with a calculated Mr of 20,987. The Mr of purified smg p21 is estimated to be about 22,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Homology search indicates that smg p21 is a novel protein with the consensus amino acid sequences for GTP/GDP-binding and GTPase domains but shares about 55% amino acid sequence homology with the human c-Ha-ras protein. Moreover, smg p21 has the same putative effector domain as the Ha-, Ki-, and N-ras proteins at the same position and the same consensus C-terminal sequence as in these ras proteins. Consistent with these structural properties, smg p21 binds specifically [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), GTP, and GDP with a Kd value for GTP gamma S of about 40 nM. smg p21 binds about 0.7 mol of GTP gamma S/mol of protein. [35S]GTP gamma S-binding to smg p21 is inhibited by pretreatment with N-ethylmaleimide.smg p21 hydrolyzes GTP to liberate Pi with a turnover number of about 0.007 min-1. These kinetic properties of smg p21 are similar to those of the c-ras proteins. These results suggest that smg p21 is a novel GTP-binding protein exerting action(s) similar or antagonistic to that (those) of the ras proteins.  相似文献   

5.
We sought to determine whether decreased in vitro GTPase activity is uniformly associated with ras p21 mutants possessing efficient transforming properties. Normal H-ras p21-[Gly12-Ala59] as well as an H-ras p21-[Gly12-Thr59] mutant exhibited in vitro GTPase activities at least fivefold higher than either H-ras p21-[Lys12-Ala59] or H-ras p21-[Arg12-Thr59] mutants. Microinjection of as much as 6 X 10(6) molecules/cell of bacterially expressed normal H-ras p21 induced no detectable alterations of NIH/3T3 cells. In contrast, inoculation of 4-5 X 10(5) molecules/cell of each p21 mutant induced morphologic alterations and stimulated DNA synthesis. Moreover, the transforming activity of each mutant expressed in a eukaryotic vector was similar and at least 100-fold greater than that of the normal H-ras gene. These findings establish that activation of efficient transforming properties by ras p21 proteins can occur by mechanisms not involving reduced in vitro GTPase activity.  相似文献   

6.
Novel regulatory proteins for smg p21A and -B, ras p21-like GTP-binding proteins (G proteins) having the same putative effector domain as ras p21s, were purified to near homogeneity from bovine brain cytosol and characterized. These regulatory proteins, designated as GDP dissociation stimulator (GDS) 1 and -2, stimulated the dissociation of both [3H]GDP and [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) from smg p21s to the same extent. smg p21 GDS1 and -2 also stimulated the binding of [35S]GTP gamma S to the GDP-bound form of smg p21s but not that to the guanine nucleotide-free form. These actions of smg p21 GDS1 and -2 were specific for smg p21s and inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, rhoB p20, and smg p25A. Neither smg p21 GDS1 nor -2 stimulated the GTPase activity of smg p21s and by itself showed [35S]GTP gamma S-binding or GTPase activity. smg p21 GDS1 and -2 showed very similar physical and kinetic properties and were indistinguishable by peptide map analysis. The Mr values of smg p21 GDS1 and -2 were estimated to be about 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S values, indicating that smg p21 GDS1 and -2 are composed of a single polypeptide without a subunit structure. smg p21 GDS1 and -2 were distinguishable from GTPase activating proteins (GAPs) for the ras and rho proteins, and smg p21B, and GDP dissociation inhibitors for smg p25A and the rho proteins previously identified in bovine brain cytosol. These results indicate that bovine brain contains regulatory proteins for smg p21s that stimulate the dissociation of GDP from and thereby the subsequent binding of GTP to smg p21s in addition to smg p21 GAP. It is likely that the conversion from the GDP-bound inactive form of smg p21s to the GTP-bound active form is regulated by smg p21 GDS and that its reverse reaction is regulated by smg p21 GAP.  相似文献   

7.
The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras   总被引:15,自引:0,他引:15  
There is growing evidence that the protein products of the ras gene family, p21ras, can couple growth factor receptors to intracellular second messenger production and in particular to phosphoinositol lipid turnover. So far, however, there has been no direct proof that the ras proteins function as typical regulatory G proteins. We show here that the human p21N-ras protein, isolated from an Escherichia coli expression system, can exist as a stable GDP complex which exchanges very slowly with exogenous GTP, the half-life of the p21N-ras X GDP complex being around 20 min. However, in low Mg2+ (0.5 microM) the exchange rate is dramatically increased and the half-life of the p21N-ras X GDP complex is less than 30 s. Furthermore, in low Mg2+, the relative binding affinity of the protein for GTP as compared to GDP is increased 10-fold. The effect of low Mg2+ on the exchange rate of both normal and oncogenic mutant p21ras molecules is identical. We propose that removal of Mg2+ in vitro induces a similar conformational change to stimulation in vivo. The properties described here are consistent with a G protein-like activity for p21N-ras.  相似文献   

8.
Nucleoside-diphosphate (NDP) kinase-associated [alpha-32P]GTP-incorporating proteins from HeLa S3 cells have been biochemically characterized. Two distinct NDP-kinases (F-I and F-II) had been partially purified from HeLa S3 cells by Sephacryl S-300 gel filtration and DEAE-cellulose column chromatography. The [alpha-32P]GTP-incorporating proteins (approx. Mr 20,000) could be separated from NDP-kinases (approx. Mr 80,000) by 5-25% glycerol density-gradient centrifugation analysis after treatment with 7 M urea in the presence of 1 mM EDTA. [alpha-32P]GTP incorporation into these two proteins (G1 and G2) from NDP-kinases required 5 mM Mg2+ and was highly inhibited by either GDP or GTP analogues, such as guanylyl imidodiphosphate and guanylyl methylenediphosphate. [3H]GDP, but no other nucleoside 5'-diphosphates, was also bound to these two proteins in the presence of Mg2+ (5 mM). Moreover, incubation of [alpha-32P]GTP with either G1 or G2 in the presence of Mg2+ (5 mM) resulted in the formation of [32P]GDP and Pi. The data presented here indicated that the guanine nucleotide-binding activity, the GTPase activity, and the molecular weight (approx. Mr 20,000) of NDP-kinase-associated proteins from HeLa S3 cells are similar to those reported for ras oncogene products (p21 proteins).  相似文献   

9.
Regulation of p21ras activity.   总被引:11,自引:0,他引:11  
The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange.  相似文献   

10.
A novel regulatory protein for the rho proteins (rhoA p21 and rhoB p20), belonging to a ras p21/ras p21-like small molecular weight (Mr) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation of GDP from rhoB p20 and the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. The Mr value of rho GDI was estimated to be about 27,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S value, indicating that rho GDI is composed of a single polypeptide without a subunit structure. The isoelectric point was about pH 5.7. rho GDI made a complex with the GDP-bound form of rhoB p20 with a molar ratio of 1:1 but not with the GTP gamma S-bound or guanine nucleotide-free form. rho GDI did not stimulate the GTPase activity of rhoB p20 and by itself showed neither GTP gamma S-binding nor GTPase activity. rho GDI was equally active for rhoA p21 and rhoB p20 but was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p25A, and smg p21. rho GDI activity was detected in the cytosol fraction of various rat tissues. These results indicate that, in mammalian tissues, there is a novel type of regulatory protein specific for the rho proteins that interacts with the GDP-bound form of the rho proteins and thereby regulates the GDP/GTP exchange reaction of the rho proteins by inhibiting the dissociation of GDP from and the subsequent binding of GTP to them. Since there is a GTPase-activating protein for the rho proteins stimulating the GTPase activity of the rho proteins in mammalian tissues, the rho proteins appear to be regulated at least by GTPase-activating protein and GDI in a dual manner.  相似文献   

11.
The human rap2 gene encodes a 183 amino acid protein that shares 46% identity with the K-ras p21. Its cDNA was engineered and inserted into the bacterial expression vector ptac; this allowed the production of high levels of soluble recombinant protein in Escherichia coli that was purified to near homogeneity. The rap2 protein binds GTP and exhibits a low intrinsic GTPase activity (rate constant of 0.5 x 10(-2) min-1). It exchanges its bound GDP with a half-life of 18 min at 37 degrees C in the presence of 10 mM Mg2+. Under the same conditions, the dissociation of bound GTP was at least 25-fold slower showing that the rap2 protein has a much higher affinity for GTP than GDP. The contribution of individual domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 12 results in a 2-fold decrease in the GDP dissociation rate constant and GTPase activity. Replacement of the Ser at position 17 by Asn severely impairs the GTP binding ability of the protein and points to an important role of this residue in the coordination of Mg2+. Mutation of Thr-35 to Ala results in a decreased affinity for GTP and a reduction (3-fold) of the GTPase activity. Finally, substitution of Thr-145 by Ile leads to an imperfect binding of guanyl nucleotides as exemplified by an increase in their dissociation rate constants and reduction of the GTPase activity of the protein. These properties of the normal and mutant rap2 proteins are compared with those of ras p21 carrying similar substitutions and are discussed in relation to the structural models proposed for ras p21.  相似文献   

12.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

13.
Normal (Gly12) and activated (Val12) Ha-ras proteins were produced in Escherichia coli, and purified to an apparent homogeneity without using any protein denaturants. The purified proteins contained an equimolar amount of GDP. They were stable in the presence of 5 mM Mg2+ and 25% (v/v) glycerol when incubated at 60 degrees C for 5 min. The binding of GDP to the protein was greatly stabilized by Mg2+. In the presence of 10 mM Mg2+, the bound GDP hardly exchanged with external guanine nucleotides, even at 30 degrees C. The exchange reaction was markedly enhanced in the presence of 10 mM EDTA or 120 mM ammonium sulfate. The rate-limiting step of the exchange reaction was the dissociation of the bound GDP from the ras protein, and this step was facilitated 40- to 100-fold by the addition of EDTA or ammonium sulfate. The dissociation rate of the normal (Gly12) ras protein was 2- to 3-fold faster than that of the activated (Val12) protein. The dissociation constants (Kd) for GDP of the normal and activated ras proteins were 1.2 X 10(-8) and 3.1 X 10(-9) M, respectively. The overall turnover rate of GTPase activity of the normal ras protein (10.8 mmol.mol-1.min-1) was about 10-fold higher than that of the activated protein (1.1 mmol.mol-1.min-1) in the absence of Mg2+ (less than 10(-8) M).  相似文献   

14.
T cell stimulation via the TCR complex (TCR/CD3 complex) results in activation of the guanine nucleotide binding proteins encoded by the ras protooncogenes (p21ras). In the present study we show that the activation state of p21ras in T lymphocytes can also be controlled by triggering of the CD2 Ag. The activation state of p21ras is controlled by GTP levels on p21ras. In T cells stimulation of protein kinase C is able to induce an accumulation of "active" p21ras-GTP complexes due to an inhibitory effect of protein kinase C stimulation on the intrinsic GTPase activity of p21ras. The regulatory effect of protein kinase C on p21ras GTPase activity appears to be mediated via regulation of GAP, the GTPase activating protein of p21ras. In the present report, we demonstrate that the TCR/CD3 complex and the CD2 Ag control the accumulation of p21ras-GTP complexes via a regulatory effect on p21ras GTPase activity. The TCR/CD3 complex and CD2 Ag are also able to control the cellular activity of GAP. These data demonstrate that p21ras is part of the signal transduction responses controlled by the CD2 Ag, and reveal that the TCR/CD3 complex and CD2 Ag control the activation state of p21ras via a similar mechanism.  相似文献   

15.
The smg-21 GTP-binding protein (smg p21) has the same effector domain as the ras proteins (ras p21s) and is identical with the proteins of the rap1A and Krev-1 genes. In this paper, two proteins stimulating the GTPase activity of smg p21 are partially purified from bovine brain cytosol. These proteins, designated as smg p21 GTPase-activating protein (GAP) 1 and 2, are separated from a c-ras p21 GAP described previously by column chromatographies. smg p21 GAP1 and -2 stimulate the GTPase activity of only smg p21 but not that of c-Ha-ras p21 or the rho and smg-25A GTP-binding proteins. smg p21 GAP1 or -2 does not stimulate the dissociation of guanosine 5'-3-O-(thio)triphosphate or GDP from smg p21. smg p21 GAP1 or -2 themselves do not have GTP/GDP binding or GTPase activity. The Mr values of smg p21 GAP1 and -2 are estimated to be 250-400 x 10(3) and 80-100 x 10(3) by gel filtration and sucrose density gradient ultracentrifugation, respectively. The activity of smg p21 GAP1 and -2 is killed by tryptic digestion or heat boiling. These results indicate that bovine brain contains two smg p21 GAPs in addition to c-ras p21 GAP.  相似文献   

16.
p21ras is palmitoylated on a cysteine residue near the C-terminus. Changing Cys-186 to Ser in oncogenic forms produces a non-palmitoylated protein that fails to associate with membranes and does not transform NIH 3T3 cells. To examine whether palmitate acts in a general way to increase ras protein hydrophobicity, or is involved in more specific interactions between p21ras and membranes, we constructed genes that encode non-palmitoylated ras proteins containing myristic acid at their N-termini. Myristoylated, activated ras, without palmitate (61Leu/186Ser) exhibited both efficient membrane association and full transforming activity. Unexpectedly, we found that myristoylated forms of normal cellular ras were also potently transforming. Myristoylated c-ras retained the high GTP binding and GTPase characteristic of the cellular protein and, moreover, bound predominantly GDP in vivo. This implied that it continued to interact with GAP (GTPase-activating protein). While the membrane binding induced by myristate permitted transformation, only palmitate produced a normal (non-transforming) association of ras with membranes and must therefore regulate ras function by some unique property that myristate does not mimic. Myristoylation thus represents a novel mechanism by which the ras proto-oncogene protein can become transforming.  相似文献   

17.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

18.
A novel type of regulatory proteins for the rho proteins (rhoA p21 and rhoB p20), ras p21-like small GTP-binding proteins (G proteins), are partially purified from bovine brain cytosol. These regulatory proteins, named rho GDP dissociation stimulator (GDS) 1 and -2, stimulate the dissociation of GDP from rhoA p21 and rhoB p20. rho GDS1 and -2 are inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, smg p21B, and smg p25A. Since we have previously shown that the rate limiting step for the GDP/GTP exchange reaction of the rho proteins is the dissociation of GDP from these proteins, the present results suggest that rho GDS1 and -2 stimulate the GDP/GTP exchange reaction of the rho proteins. rho GDS1 and -2 are distinct from the GAP- and GDI-types of regulatory proteins for the rho proteins previously purified from bovine brain cytosol. rho GAP stimulates the GTPase activity of the rho proteins and rho GDI inhibits the GDP/GTP exchange reaction of the rho proteins. The present results together with these earlier observations indicate that the rho proteins are regulated by at least three different types of regulatory proteins, GDS, GDI, and GAP.  相似文献   

19.
A number of growth factors, including insulin and epidermal growth factor (EGF), induce accumulation of the GTP-bound form of p21ras. This accumulation could be caused either by an increase in guanine nucleotide exchange on p21ras or by a decrease in the GTPase activity of p21ras. To investigate whether insulin and EGF affect nucleotide exchange on p21ras, we measured binding of [alpha-32P]GTP to p21ras in cells permeabilized with streptolysin O. For this purpose, we used a cell line which expressed elevated levels of p21 H-ras and which was highly responsive to insulin and EGF. Stimulation with insulin or EGF resulted in an increase in the rate of nucleotide binding to p21ras. To determine whether this increased binding rate is due to the activation of a guanine nucleotide exchange factor, we made use of the inhibitory properties of a dominant negative mutant of p21ras, p21ras (Asn-17). Activation of p21ras by insulin and EGF in intact cells was abolished in cells infected with a recombinant vaccinia virus expressing p21ras (Asn-17). In addition, the enhanced nucleotide binding to p21ras in response to insulin and EGF in permeabilized cells was blocked upon expression of p21ras (Asn-17). From these data, we conclude that the activation of a guanine nucleotide exchange factor is involved in insulin- and EGF-induced activation of p21ras.  相似文献   

20.
Residues 32 to 40, which are conserved among ras proteins from different species, are likely to participate in interactions with the p21 effector system. With the goal of understanding the structural basis of the regulatory functions of c-Ha-ras p21, we produced rabbit antisera against a synthetic peptide corresponding to amino acids 33 to 42 of the protein. The affinity-purified antibodies interacted specifically with p21 and with the antigenic peptide. The epitope recognized by the antibodies appeared to be centered on threonine 35. The antibodies inhibited both in vitro p21-induced production of cyclic AMP in detergent extracts of RAS-defective yeast membranes and GAP-stimulated GTPase activity. However, monoclonal anti-ras antibodies Y13-259 and Y13-238 were not capable of specifically inhibiting interactions of p21 with these two putative effector proteins. The apparent inhibitory effect of Y13-259 on stimulation of p21 by GAP was due to a greatly reduced rate of exchange of nucleotides in the binding pocket of the protein. These findings provide additional support for the essential role of the residue 32 to 40 domain as the true effector site and further evidence of the involvement of GAP as a cellular effector of ras proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号