首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relaxation rates of the carbon-bound protons and of the three assigned phosphorus resonances of propionyl-CoA were measured in solutions of free propionyl-CoA and of the transcarboxylase-propionyl-CoA complex. In free propionyl-CoA, analysis of the 1/T1 values of 15 protons at 100 and 220 MHz and of 1/T1 and 1/T2 of the three phosphorus atoms at 40.5 MHz indicated free rotation of the propionyl region (taur approximately 3 x 10(-11) sec) but hindered motion of the remainder of the molecule with correlation times of 1-3. 5 x 10(-10) sec, approaching the tumbling time of the entire molecule (taur - 6 x 10(-10) sec. The correlation times of the three phosphorus atoms were indistinguishable from those of their nearest neighbor protons. The effects of three homogeneous enzyme preparations with varying contents of Zn(II), Co(II), and Cu(II) on 1/T1 of 12 protons and 3 phosphorus atoms of prionyl-CoA were analyzed with the help of simultaneous equations to yield the individual contributions at the three metal sites. Only diamagnetic effects were detected on the relaxation rates of the three phosphorus atoms. From the diamagnetic effects it was calculated that the motions of the prionyl side chain and of the terminal pantetheine methylene protons were hindered on the enzyme by an order of magnitude (taur approximately 6 x 10(-10) sec) and that the phosphorus atoms were hindered by two orders of magnitude (taur approximately 1 x 10(-8) sec) over the taur values found in free propionyl-CoA, but that these taur values remained well below that of the entire protein molecule (taur =6 x 10(-7) sec)...  相似文献   

2.
3.
Y F Cheung  C H Fung  C Walsh 《Biochemistry》1975,14(13):2981-2986
The stereochemistry of the two half-reactions catalyzed by the biotin-containing enzyme, transcarboxy-lase from Propionobacteria shermanii, has been determined. The pro-R hydrogen at C-2 of propionyl-coenzyme A is replaced by CO2 in formation of the S isomer of methylmalonyl-CoA, defining the process as retention of configuration. This C-2 hydrogen is abstracted at a rate identical with product formation. For the other half-reaction, pyruvate to oxalacetate, the chiral methyl group methodology of Rose (I. A. Rose (1970), J. Biol. Chem. 245, 6052) was employed. First, it was determined with [3-2-He]pyruvate that a kinetic deuterium isotope effect of 2.1 occurs at Vmax in this carboxyl transfer, indicating that the necessary requirement for discrimination against heavy isotopes of hydrogen existed. Then, 3(S)-[3-2-H,3-H]pyruvate, generated from 3(S)-]E-2-H,3-H]phosphoglycerate, was carboxylated and the oxalacetate trapped as [3030H]malate using malate dehydrogenase. Exhaustive incubation of the tritiated malate (3-H/14-C = 1.95) with fumarase to labilize the pro-R hydrogen at C-3 resulted in release of 65% of the tritium into water. Reisolation of the malate after fumarase action yielded a 30H/14-C ration of 0.67, indicating 34% retention as expected. The theoretical enantiotopic distribution for the observed k1H/k2H of 2.1 is 68:32. Selective enrichment of tritium in the pro-R position at C-3 of malate indicates enzymatic carboxylation of pyruvate with retention of configuration in this half-reaction also.  相似文献   

4.
5.
H Hoving  B Crysell  P F Leadlay 《Biochemistry》1985,24(22):6163-6169
The stereochemistry of the transcarboxylase-catalyzed carboxylation of 3-fluoropyruvate has been studied by using fluorine NMR of unpurified reaction mixtures. When the product 3-fluorooxaloacetate was trapped by using malate dehydrogenase, only the 2R,3R diastereomer of 3-fluoromalate was formed. The fluoromethyl group of fluoropyruvate does not take up deuterium label from the solvent during the reaction. These results confirm and extend those obtained previously by Walsh and co-workers [Goldstein, J. A., Cheung, Y. F., Marletta, M. A., & Walsh, C. (1978) Biochemistry 17, 5567-5575] showing that transcarboxylase is specific for one of the two prochiral hydrogens in fluoropyruvate. Transcarboxylase, coupled to malate dehydrogenase, has been used to analyze samples of chiral fluoropyruvate obtained by dephosphorylation of (Z)-fluorophosphoenolpyruvate in D2O in the presence of either pyruvate kinase or enzyme I from the Escherichia coli sugar transport systems. Analysis of the fluoromalate produced showed that fluoroenolpyruvate is deuterated from opposite faces by these two enzymes: enzyme I protonates (deuterates) fluoroenolpyruvate exclusively from the 2-re face and pyruvate kinase does so mainly from the 2-si face. Fluoropyruvate is carboxylated by transcarboxylase with absolute retention of configuration.  相似文献   

6.
Co2+, which activates rabbit muscle pyruvate kinase, competes with Mn2+ for the active site of the enzyme with a KD of 46 muM. Co2+ binds to phosphoenolpyruvate with a KD of 4.1 mM. The structures of the binary Co2+/P-enolpyruvate, and quaternary pyruvate kinase/Co2+/K+/P-enolpyruvate complexes were studied using EPR and the effects of Co2+ on the longitudinal (T1) and transverse (T2) relaxation times of the protons of water and P-enolpyruvate and the phosphorus of P-enolpyruvate. The EPR spectra of all complexes at 6 K, disappear above 40 K and reveal principal g values between 2 and 7 indicating high spin Co2+. For free Co2+ and for the binary Co2+/P-enolpyruvate complex, the T1 of water protons was independent of frequency in the range 8, 15, 24.3, 100, and 220 MHz. Assuming coordination numbers (q) of 6 and 5 for free Co2+ and Co2+/P-enolpyruvate, respectively, correlation times (tauc) of 1.3 times 10(-13) and 1.7 times 10(-13) s, were calculated. The distances from Co2+ and phosphorus and to the cis and trans protons in the binary Co2+/P-enolpyruvate complex calculated from their T1 values were 2.7 A, 4.1 A, AND 5.3 A, respectively, indicating an inner sphere phosphoryl complex. Consistent with direct phosphoryl coordination, a large Co2+ to phosphorus hyperfine contact coupling constant (A/h) of 5 times 10(5) Hz was determined by the frequency dependence of the T2 of phosphorus at 25.1, 40.5, and 101.5 MHz. For both enzyme complexes, the dipolar correlation time tauc was 2 times 10(-12) s and the number of rapidly exchanging water ligands (q) was 0.6 as determined from the frequency dependence of the T1 of water protons. In the quaternary enzyme/Co2+/K+/P-enolyruvate complex this tauc value was consistent with the frequency dependence of the T1 of the phosphorus of enzyme-bound P-enolpyruvate at 25.1 and 40.5 MHz. Distances from enzyme-bound C02+ to the phosphorus and protons of P-enolpyruvate, from their T1 values, were 5.0 A and 8 to 10 A, respectively, indicating a predominantly (greater than or equal to 98%) second spere complex and less than 2% inner sphere complex. Consistent with a second sphere complex on the enzyme, an A/h value of less than 10(3) Hz was determined from the frequency dependence of the T2 of phosphorus. In all complexes the exchange reates were found to be faster than the paramagnetic relaxation rates and the hyperfine contact interaction was found to be small compared to the dipolar interaction. The results thus indicate that the interaction of C02+ with P-enolpyruvate is greatly decreased upon binding to the active site of pyruvate kinase.  相似文献   

7.
8.
9.
The interaction of CrADP, an exchange-inert paramagnetic analogue of Mg-ADP, with yeast hexokinase has been studied by measuring the effects of CrADP on the longitudinal nuclear relaxation rate (1/T1) of the protons of water and the protons and phosphorus atom of enzyme-bound glucose-6-P. The paramagnetic effect of CrADP on 1/T1 of water protons is enhanced upon complexation with the enzyme. Titrations measuring this paramagnetic effect at several enzyme concentrations in the presence of glucose-6-P yielded a characteristic enhancement factor for 1/T1 of water protons and the dissociation constant of CrADP from the ternary enzyme . ADPCr . glucose-6-P complex. The latter value (2 mM) is similar to that obtained from kinetic inhibition studies (Danenberg and Cleland [1975]. Biochemistry. 14:28). The presence of glucose-6-P increased the enhancement of the water relaxation rate by enzyme-bound CrADP, suggesting the formation of an enzyme . CrADP . glucose-6-P complex. The existence of such a complex was confirmed by the observation of a paramagnetic effect of enzyme-bound CrADP on the l/T1 of the 31P-nucleus and protons of enzyme-bound glucose-6-P. From the paramagnetic effects of enzyme-bound CrADP on the relaxation rates of the 31P-nucleus and the carbon-bound protons of glucose-6-P in the enzyme . ADPCr . glucose-6-P complex, using the correlation time of approximately 0.7 ns, determined from the magnetic field-dependence of 1/T1 of water protons over the range 24.3-360 MHz, a Cr3+ to phosphorus distance of 6.6 +/- 0.7 A and Cr3+ to alpha- and beta-anomeric proton distances of 8.9 and 9.7 A were calculated. These results imply the absence of a direct coordination of the phosphoryl group of glucose-6-P by the nucleotide-bound metal on hexokinase but indicate van der Waals contact between a phosphoryl oxygen of glucose-6-P and the hydration sphere of the nucleotide-bound metal. The distances are consistent with a model that assumes molecular contact between the phosphorus of glucose-6-P and a beta-phosphoryl oxygen of ADP suggesting an associative phosphoryl transfer. Because after phosphorylation of ADP, the metal ion is coordinated to the transferred phosphoryl group, the overall migration of the phosphoryl group during the phosphoryl transfer is approximately 3.6 A toward the nucleotide-bound metal. Little or no catalysis of phosphoryl transfer from glucose-6-P to alpha, beta-bidentate or beta-monodentate CrADP ( less than or equal to 0.05% of the rate found with MgADP) occurred in the presence of hexokinase, as monitored by glucose formation in a coupled assay system using glucose oxidase and peroxidase. The ability of beta, gamma-bidentate CrATP to act as a substrate (Danenberg and Cleland [1975].  相似文献   

10.
Propionyl-CoA carboxylase (EC 6.4.1.3) has been purified from Mycobacterium smegmatis. It has a molecular weight of about 500,000. On sodium dodecyl sulfate gels it dissociates into two subunits with molecular weights of 64,000 and 57,000. There are 3.8 mol of biotin/500,000 g of protein. The biotin is associated entirely with the heavier subunit. The enzyme also used acetyl-CoA as a substrate. No other acetyl-CoA carboxylase could be detected in this organism.  相似文献   

11.
G Michaels  Y Milner  G H Reed 《Biochemistry》1975,14(14):3213-3219
Pyruvate, orthophosphate dikinase (EC 2.7.9.1) carries out its catalytic function in three successive partial reactions, the final step being the reaction of pyruvate with a stable phosphoenzyme intermediate to give phosphoenolpyruvate and free enzyme (Evans, H.J., and Wood, H. G. (1968), Proc. Natl. Acad. Sci. U.S.A. 61, 1448). Interactions of oxalate, a structural analog of enolpyruvate, with the phosphorylated form of the enzyme have been investigated by kinetic inhibition measurements and by magnetic resonance studies of manganous ion complexes with the enzyme. Oxalate inhibits the reaction catalyzed by pyruvate, phosphate dikinase, and the inhibition is linearly competitive with respect to pyruvate. The inhibitor constant for oxalate of 25 mu-M is fourfold lower than the Michaelis constant for pyruvate. The enhancement in the longitudinal relaxation rate of water protons (PRR) which occurs upon binding of Mn(II) to the enzyme has been used to monitor binding of oxalate to Mn(II)-enzyme complexes. PRR titrations indicate that the dissociation constant of oxalate from the Mn(II) complex of the free form of the enzyme is an order of magnitude weaker than the kinetically determined Ki. On the other hand, titrations of solutions which contain the phosphorylated form of the enzyme reveal a much stronger binding of oxalate. Moreover, the strength of oxalate binding to the phosphorylated enzyme is a function both of the species and of the concentration of monovalent cations in the solution. In the presence of Tl+, which has the most favorable activator constant for the final partial reaction, the dissociation constant for oxalate from its complex with the phosphorylated enzyme is less than 1 mu-M. Electron paramagnetic resonance (EPR) spectra for the enzyme-bound Mn(II) are sensitive to structural perturbations which occur upon binding of substrates or of oxalate to the enzyme. The EPR spectrum for the Mn(II)-phosphoenzyme-oxalate species is distinguished from spectra for other complexes of the enzyme by unusually narrow line widths and consequent resolution of fine structure from electronic quadrupole splitting. The narrow lines in the EPR spectrum are indicative of a rigid, pseudocrystalline environment for the bound Mn(II). The magnitude and frequency dependence of the PRR for the Mn(II)-phosphoenzyme-oxalate complex indicate that if any water molecules are bound to the Mn(II), their exchange with the bulk water is severely retarded. The kinetic and magnetic resonance studies support the hypothesis that oxalate mimics the reactive intermediate, enolpyruvate, in a complex with the phosphorylated enzyme which may resemble the structure of the transition state of the final partial reaction.  相似文献   

12.
13.
14.
Measurements of water proton spin relaxation enhancements (epsilon) can be used to discriminate high-affinity binding of Mn-2+ or Gd-3+ to biological membranes, from low-affinity binding. In rat liver mitochondria, epsilon b values of approx. 11 are observed upon binding of Mn-2+ to the inner membrane, while internal or low-affinity binding remains invisible to this technique. Energy-driven Mn-2+ uptake by liver mitochondria results in the subsequent decay of epsilon. Comparison of epsilon with the initial velocity of Mn-2+ uptake in rat liver mitochondria reveals a linear correlation, which holds at all temperatures between 0 degrees C and 40 degrees C, regardless of the mitochondrial protein concentration. Consequently, enhancement appears to reflect the binding of Mn-2+ to the divalent cation pump. Binding of Mn-2+ to blowfly flight muscle also results in substantial epsilon, which is associated with the glycerol-1-phosphate dehydrogenase instead of divalent cation transport. Consequently, no decay in epsilon due to uptake occurs after Mn-2+ is bound. Lanthanide ions are also bound and transported by mitochondria. Addition of Gd-3+ to pigeon heart or rat liver mitochondria results in epsilon b approximately equal to 5-6, which decays with similar kinetics in both systems. The uptake velocity of Gd-3+ in rat liver mitochondria is about 1/6 the rate with which Mn-2+ is transported. Lanthanides also diminish epsilon due to the addition of Mn-2+, and greatly retard the Mn-2+ uptake kinetics. The presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone depresses epsilon upon addition of Mn-2+ or Gd-3+ and also uncouples energy-driven uptake. On the other hand, prolonged anaerobic incubation in the presence of antimycin and rotenone exhausts the mitochondria of their energy stores, blocks the uptake of Mn-2+, but does not affect epsilon significantly. Evidently, the uncoupler-induced disappearance of divalent cation binding sites is not the result of "de-energization". Measurements of epsilon at several NMR frequencies indicate a correlation time (tau b) for carrier-bound Mn-2+ in rat liver mitochondria between 20 ns and 4 ns as one varies the temperature between 10 degrees C and 30 degrees C. The 13 Kcal/mole activation energy for tau b suggests that the 11 ns time constant at room temperature represents the movement of the Mn-11-carrier comples. On the other hand, tau b is probably approx. 100 times too short to represent the rotational motion of a carrier protein. Apparently, Mn-2+ binds to a small arm of the carrier which moves independent  相似文献   

15.
16.
17.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号