首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
ToxR, a transmembrane regulatory protein, has been shown to respond to environmental stimuli. To better understand how the aquatic bacterium Vibrio anguillarum, a fish pathogen, responds to environmental signals that may be necessary for survival in the aquatic and fish environment, toxR and toxS from V. anguillarum serotype O1 were cloned. The deduced protein sequences were 59 and 67% identical to the Vibrio cholerae ToxR and ToxS proteins, respectively. Deletion mutations were made in each gene and functional analyses were done. Virulence analyses using a rainbow trout model showed that only the toxR mutant was slightly decreased in virulence, indicating that ToxR is not a major regulator of virulence factors. The toxR mutant but not the toxS mutant was 20% less motile than the wild type. Like many regulatory proteins, ToxR was shown to negatively regulate its own expression. Outer membrane protein (OMP) preparations from both mutants indicated that ToxR and ToxS positively regulate a 38-kDa OMP. The 38-kDa OMP was shown to be a major OMP, which cross-reacted with an antiserum to OmpU, an outer membrane porin from V. cholerae, and which has an amino terminus 75% identical to that of OmpU. ToxR and to a lesser extent ToxS enhanced resistance to bile. Bile in the growth medium increased expression of the 38-kDa OMP but did not affect expression of ToxR. Interestingly, a toxR mutant forms a better biofilm on a glass surface than the wild type, suggesting a new role for ToxR in the response to environmental stimuli.  相似文献   

5.
6.
7.
8.
V L Miller  R K Taylor  J J Mekalanos 《Cell》1987,48(2):271-279
  相似文献   

9.
10.
11.
12.
13.
14.
15.
A genomic library derived from the deep-sea bacterium Photobacterium profundum SS9 was conjugally delivered into a previously isolated pressure-sensitive SS9 mutant, designated EC1002 (E. Chi and D. H. Bartlett, J. Bacteriol. 175:7533-7540, 1993), and exconjugants were screened for the ability to grow at 280-atm hydrostatic pressure. Several clones were identified that had restored high-pressure growth. The complementing DNA was localized and in all cases found to possess strong homology to recD, a DNA recombination and repair gene. EC1002 was found to be deficient in plasmid stability, a phenotype also seen in Escherichia coli recD mutants. The defect in EC1002 was localized to a point mutation that created a stop codon within the recD gene. Two additional recD mutants were constructed by gene disruption and were both found to possess a pressure-sensitive growth phenotype, although the magnitude of the defect depended on the extent of 3' truncation of the recD coding sequence. Surprisingly, the introduction of the SS9 recD gene into an E. coli recD mutant had two dramatic effects. At high pressure, SS9 recD enabled growth in the E. coli mutant strain under conditions of plasmid antibiotic resistance selection and prevented cell filamentation. Both of these effects were recessive to wild-type E. coli recD. These results suggest that the SS9 recD gene plays an essential role in SS9 growth at high pressure and that it may be possible to identify additional aspects of RecD function through the characterization of this activity.  相似文献   

16.
Cholera still remains an important global predicament especially in India and other developing countries. Vibrio cholerae, the etiologic agent of cholera, colonizes the small intestine and produces an enterotoxin that is largely responsible for the watery diarrheal symptoms of the disease. Using RNA arbitrarily primed PCR, ND5 a mitochondria encoded subunit of complex I of the mitochondrial respiratory chain was found to be upregulated in the human intestinal epithelial cell line Int407 following exposure to V. cholerae. The upregulation of ND5 was not observed when Int407 was infected with Escherichia coli strains. Incubation with heat-killed V. cholerae or cholera toxin or culture supernatant also showed no such upregulation indicating the involvement of live bacteria in the process. Infection of the monolayer with aflagellate non-motile mutant of V. cholerae O395 showed a very significant (59-fold) downregulation of ND5. In contrast, a remarkable upregulation of ND5 expression (200-fold) was observed in a hyperadherent icmF insertion mutant with reduced motility. V. cholerae cheY4 null mutant defective in adherence and motility also resulted in significantly reduced levels of ND5 expression while mutant with the cheY4 gene duplicated showing increased adherence and motility resulted in increased expression of ND5. These results clearly indicate that both motility and adherence to intestinal epithelial cells are possible triggering factors contributing to ND5 mRNA expression by V. cholerae. Interestingly infection with insertion mutant in the gene coding for ToxR, the master regulator of virulence in V. cholerae resulted in significant downregulation of ND5 expression. However, infection with ctxA or toxT insertion mutants did not show any significant changes in ND5 expression compared to wild-type. Almost no expression of ND5 was observed in case of mutation in the gene coding for OmpU, a ToxR activated protein. Thus, infection of Int407 with virulence mutant strains of V. cholerae revealed that the ND5 expression is modulated by the virulence of V. cholerae in a ToxT independent manner. Although no difference in the mitochondrial copy number could be detected between infected and uninfected cells, the modulation of the expression of other mitochondrial genes were also observed. Incidentally, upon V. cholerae infection, complex I activity was found to increase about 3-folds after 6 h. This is the first report of alteration in mitochondrial gene expression upon infection of a non-invasive enteric bacterium like V. cholerae showing its modulation with adherence, motility and virulence of the organism.  相似文献   

17.
18.
19.
20.
Photobacterium profundum is a cosmopolitan marine bacterium capable of growth at low temperature and high hydrostatic pressure. Multiple strains of P. profundum have been isolated from different depths of the ocean and display remarkable differences in their physiological responses to pressure. The genome sequence of the deep-sea piezopsychrophilic strain Photobacterium profundum SS9 has provided some clues regarding the genetic features required for growth in the deep sea. The sequenced genome of Photobacterium profundum strain 3TCK, a non-piezophilic strain isolated from a shallow-water environment, is now available and its analysis expands the identification of unique genomic features that correlate to environmental differences and define the Hutchinsonian niche of each strain. These differences range from variations in gene content to specific gene sequences under positive selection. Genome plasticity between Photobacterium bathytypes was investigated when strain 3TCK-specific genes involved in photorepair were introduced to SS9, demonstrating that horizontal gene transfer can provide a mechanism for rapid colonisation of new environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号