首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations in SALL4, the human homolog of the Drosophila homeotic gene spalt (sal), cause the autosomal dominant disorder known as Okihiro syndrome. In this study, we show that a targeted null mutation in the mouse Sall4 gene leads to lethality during peri-implantation. Growth of the inner cell mass from the knockout blastocysts was reduced, and Sall4-null embryonic stem (ES) cells proliferated poorly with no aberrant differentiation. Furthermore, we demonstrated that anorectal and heart anomalies in Okihiro syndrome are caused by Sall4 haploinsufficiency and that Sall4/Sall1 heterozygotes exhibited an increased incidence of anorectal and heart anomalies, exencephaly and kidney agenesis. Sall4 and Sall1 formed heterodimers, and a truncated Sall1 caused mislocalization of Sall4 in the heterochromatin; thus, some symptoms of Townes-Brocks syndrome caused by SALL1 truncations could result from SALL4 inhibition.  相似文献   

2.
3.
SALL4 is one out of four human homologues of the DROSOPHILA region-specific homeotic gene SPALT(SAL). Heterozygous mutations of SALL4 on chromosome 20q13.13--> q13.2 cause the autosomal dominant Okihiro syndrome which is characterized by radial limb defects, Duane anomaly and hearing loss. We have partially cloned the murine homologue of this gene, named SALL4, and completed the coding sequence by comparison to available EST and genomic sequences in the GenBank database. This comparison also revealed the chromosomal location of SALL4 on mouse chromosome 2H3 and suggested that a predicted testis expressed gene TEX20 at the very same locus is most likely not a gene on its own but part of the SALL4 3' UTR. We analyzed the expression of SALL4 during early embryogenesis by whole mount in situ hybridization and in the adult mouse by Northern blotting. In adult tissues, SALL4 expression is only found in testis and ovary. During embryonic development, SALL4 expression is widespread in early embryos and becomes gradually confined to the head region and the primitive streak. Prominent expression in the developing midbrain, branchial arches and the limbs suggests an important function of SALL4 during development of these structures as expected from the observation in Okihiro syndrome patients.  相似文献   

4.
5.
The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required for maintenance of embryonic stem cells and establishment of induced pluripotent stem cells, and is thus considered to be one of the stemness genes. Sall4 is also a causative gene for Okihiro syndrome and is essential for the formation of many organs in both humans and mice. However, its expression and role in kidney development remain unknown, despite the essential role of Sall1 in the metanephric mesenchyme. Here, we report that mouse Sall4 is expressed transiently in the Wolffian duct-derived lineage, and is nearly complementary to Sall1 expression. While Sall4 expression is excluded from the Wolffian duct at embryonic (E) day 9.5, Sall4 is expressed in the Wolffian duct weakly in the mesonephric region at E10.5 and more abundantly in the caudal metanephric region where ureteric budding occurs. Sall4 expression is highest at E11.5 in the Wolffian duct and ureteric bud, but disappears by E13.5. We further demonstrate that Sall4 deletion in the Wolffian duct and ureteric bud does not cause any apparent kidney phenotypes. Therefore, Sall4 is expressed transiently in the caudal Wolffian duct and the ureteric bud, but is dispensable for kidney development in mice.  相似文献   

6.
SALL/Sall is a mammalian homolog of the Drosophila region-specific homeotic gene spalt (sal), and heterozygous mutations in SALL1 in humans lead to Townes-Brocks syndrome. We earlier reported that mice deficient in Sall1 die in the perinatal period and that kidney agenesis or severe dysgenesis are present. We have now generated mice lacking Sall2, another Sall family gene. Although Sall2 is expressed mostly in an overlapping fashion versus that of Sall1, Sall2-deficient mice show no apparent abnormal phenotypes. Morphology and gene expression patterns of the mutant kidney were not affected. Mice lacking both Sall1 and Sall2 show kidney phenotypes comparable to those of Sall1 knockout, thereby demonstrating the dispensable roles of Sall2 in embryonic and kidney development.  相似文献   

7.
8.
9.
SALL1, a causative gene for Townes-Brocks syndrome, encodes a zinc finger protein, and its mouse homolog (Sall1) is essential for metanephros development, as noted during gene targeting. In the embryonic kidney, Sall1 is expressed abundantly in mesenchyme-derived structures from condensed mesenchyme, S-, comma-shaped bodies, to renal tubules and podocytes. We generated mice in which a green fluorescent protein (GFP) gene was inserted into the Sall1 locus and we isolated the GFP-positive population from embryonic kidneys of these mice by fluorescein-activated cell sorting. The GFP-positive population indeed expressed mesenchymal genes, while the negative population expressed genes in the ureteric bud. To systematically search for genes expressed in the mesenchyme-derived cells, we compared gene expression profiles in the GFP-positive and -negative populations using microarray analysis, followed by in situ hybridization. We detected many genes known to be important for metanephros development including Sall1, GDNF, Raldh2, Pax8 and FoxD1, and genes expressed abundantly in the metanephric mesenchyme such as Unc4.1, Six2, Osr-2 and PDGFc. We also found groups of genes including SSB-4, Smarcd3, micro-Crystallin, TRB-2, which are not known to be expressed in the metanephric mesenchyme. Therefore a combination of microarray technology and Sall1-GFP mice is useful for systematic identification of genes expressed in the developing kidney.  相似文献   

10.
11.
12.
Reciprocal signals from embryonic and extra-embryonic tissues pattern the embryo in proximal-distal (PD) and anterior-posterior (AP) fashion. Here we have analyzed three gene trap mutations of Sall4, of which one (Sall4-1a) led to a hypomorphic and recessive phenotype, demonstrating that Sall4-1a has yet undescribed extra-embryonic and embryonic functions in regulating PD and AP axis formation. In Sall4-1a mutants the self-maintaining autoregulatory interaction between Bmp4, Nodal and Wnt, which determines the PD axis was disrupted because of defects in the extra-embryonic visceral endoderm. More severely, two distinct Sall4 gene-trap mutants (Sall4-1a,b), resembling null mutants, failed to initiate Bmp4 expression in the extra-embryonic ectoderm and Nodal in the epiblast and were therefore unable to initiate PD axis formation. Tetraploid rescue underlined the extra-embryonic nature of the Sall4-1a phenotype and revealed a further embryonic function in Wnt/beta-catenin signaling to elongate the AP axis during gastrulation. This observation was supported through genetic interaction with beta-catenin mutants, since compound heterozygous mutants recapitulated the defects of Wnt3a mutants in posterior development.  相似文献   

13.
14.
Truncating mutations of the gene SALL4 on chromosome 20q13.13–13.2 cause Okihiro and acro-renal-ocular syndromes. Pathogenic missense mutations within the SALL4 or SALL1 genes have not yet been reported, raising the question which phenotypic features would be associated with them. Here we describe the first missense mutation within the SALL4 gene. The mutation results in an exchange of a highly conserved zinc-coordinating Histidine crucial for zinc finger (ZF) structure within a C2H2 double ZF domain to an Arginine. Molecular modeling predicts that this exchange does not result in a loss of zinc ion binding but leads to an increased DNA-binding affinity of the domain. The index patient shows mild features of Okihiro syndrome, but in addition cranial midline defects (pituitary hypoplasia and single central incisor). This finding illustrates that the phenotypic and functional effects of SALL4 missense mutations are difficult to predict, and that other SALL4 missense mutations might lead to phenotypes not overlapping with Okihiro syndrome. This study has received approval by the institutional review board (Ethics committee) of the Medical Faculty, University of Freiburg, Germany. Jan Miertus and Wiktor Borozdin have equally contributed to this work.  相似文献   

15.
16.
17.
SALL1 is one of three human homologues of the Drosophila region-specific homeotic gene spalt (sal). Mutations of SALL1 on chromosome 16q12.1 cause Townes--Brocks syndrome (TBS) which is characterized by defects in multiple organ systems including limbs, ears, kidneys and anus. Here, we have analyzed the expression of the mouse homologue of SALL1 (Sall1) during early embryogenesis. Sall1 expression is very prominent in the developing brain and the limbs. Other sites of expression include the meso- and metanephros, lens, olfactory bulbs, heart, primitive streak and the genital tubercle. Hence, Sall1 expression to a large degree reflects the structures affected in human TBS.  相似文献   

18.
19.
SALL1 is a mammalian homolog of the Drosophila region-specific homeotic gene spalt (sal); heterozygous mutations in SALL1 in humans lead to Townes-Brocks syndrome. We have isolated a mouse homolog of SALL1 (Sall1) and found that mice deficient in Sall1 die in the perinatal period and that kidney agenesis or severe dysgenesis are present. Sall1 is expressed in the metanephric mesenchyme surrounding ureteric bud; homozygous deletion of Sall1 results in an incomplete ureteric bud outgrowth, a failure of tubule formation in the mesenchyme and an apoptosis of the mesenchyme. This phenotype is likely to be primarily caused by the absence of the inductive signal from the ureter, as the Sall1-deficient mesenchyme is competent with respect to epithelial differentiation. Sall1 is therefore essential for ureteric bud invasion, the initial key step for metanephros development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号