首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protein-tyrosine phosphatase (PTP) 'YopH' is a virulence factor of Yersinia pestis, the causative agent of plague. Potential use of Yersinia as a bioterrorism agent renders YopH inhibitors of therapeutic importance. Previously, we had examined the inhibitory potencies of a variety of phosphotyrosyl (pTyr) mimetics against the human PTP1B enzyme by displaying them in the EGFR-derived hexapeptide sequence, 'Ac-Asp-Ala-Asp-Glu-Xxx-Leu-amide', where Xxx=pTyr mimetic. The poor inhibitory potencies of certain of these pTyr mimetics were attributed to restricted orientation within the PTP1B catalytic pocket incurred by extensive peripheral interaction of the hexapeptide platform. Utilizing the smaller tripeptide platform, 'Fmoc-Glu-Xxx-Leu-amide' we demonstrate herein that several of the low affinity hexapeptide-expressed pTyr mimetics exhibit high PTP1B affinity within the context of the tripeptide platform. Of particular note, the mono-anionic 4-(carboxydifluoromethyl)Phe residue exhibits affinity equivalent to the di-anionic F(2)Pmp residue, which had previously been among the most potent PTP-binding motifs. Against YopH, it was found that all tripeptides having Glu residues with an unprotected side chain carboxyl were inactive. Alternatively, in their Glu-OBn ester forms, several of the tripeptides exhibited good YopH affinity with the mono-anionic peptide, Fmoc-Glu(OBn)-Xxx-Leu-amide, where Xxx=4-(carboxymethyloxy)Phe providing an IC(50) value of 2.8 microM. One concern with such inhibitors is that they may potentially function by non-specific mechanisms. Studies with representative inhibitors, while failing to provide evidence of a non-specific promiscuous mode of inhibition, did indicate that non-classical inhibition may be involved.  相似文献   

2.
The parathyroid hormone-related protein (PTHrP) precursor requires proteolytic processing to generate PTHrP-related peptide products that possess regulatory functions in the control of PTH-like (parathyroid-like) actions and cell growth, calcium transport, and osteoclast activity. Biologically active peptide domains within the PTHrP precursor are typically flanked at their NH2- and COOH-termini by basic residue cleavage sites consisting of multibasic, dibasic, and monobasic residues. These basic residues are predicted to serve as proteolytic cleavage sites for converting the PTHrP precursor into active peptide products. The coexpression of the prohormone processing enzyme PTP ("prohormone thiol protease") in PTHrP-containing lung cancer cells, and the lack of PTP in cell lines that contain little PTHrP, implicate PTP as a candidate processing enzyme for proPTHrP. Therefore, in this study, PTP cleavage of recombinant proPTHrP(1-141) precursor was evaluated by MALDI mass spectrometry to identify peptide products and cleavage sites. PTP cleaved the PTHrP precursor at the predicted basic residue cleavage sites to generate biologically active PTHrP-related peptides that correspond to the NH2-terminal domain (residues 1-37) that possesses PTH-like and growth regulatory activities, the mid-region domain (residues 38-93) that regulates calcium transport, and the COOH-terminal domain (residues 102-141) that modulates osteoclast activity. Lack of cleavage at other types of amino acids demonstrated the specificity of PTP processing at basic residue cleavage sites. Overall, these results demonstrate the ability of PTP to cleave the PTHrP precursor at multibasic, dibasic, and monobasic residue cleavage sites to generate active PTHrP-related peptides. The presence of PTP immunoreactivity in PTHrP-containing lung cancer cells suggests PTP as a candidate processing enzyme for the PTHrP precursor.  相似文献   

3.
Catestatin is an active 21-residue peptide derived from the chromogranin A (CgA) precursor, and catestatin is secreted from neuroendocrine chromaffin cells as an autocrine regulator of nicotine-stimulated catecholamine release. The goal of this study was to characterize the primary sequences of high molecular mass catestatin intermediates and peptides to define the proteolytic cleavage sites within CgA that are utilized in the biosynthesis of catestatin. Catestatin-containing polypeptides, demonstrated by anti-catestatin western blots, of 54-56, 50, 32, and 17 kDa contained NH(2)-terminal peptide sequences that indicated proteolytic cleavages of the CgA precursor at KK downward arrow, KR downward arrow, R downward arrow, and KR downward arrow basic residue sites, respectively. The COOH termini of these catestatin intermediates were defined by the presence of the COOH-terminal tryptic peptide of the CgA precursor, corresponding to residues 421-430, which was identified by MALDI-TOF mass spectrometry. Results also demonstrated the presence of 54-56 and 50 kDa catestatin intermediates that contain the NH(2) terminus of CgA. Secretion of catestatin intermediates from chromaffin cells was accompanied by the cosecretion of catestatin (CgA(344)(-)(364)) and variant peptide forms (CgA(343)(-)(368) and CgA(332)(-)(361)). These determined cleavage sites predicted that production of high molecular mass catestatin intermediates requires cleavage at the COOH-terminal sides of paired basic residues, which is compatible with the cleavage specificities of PC1 and PC2 prohormone convertases. However, it is notable that production of catestatin itself (CgA(344)(-)(364)) utilizes more unusual cleavage sites at the NH(2)-terminal sides of downward arrow R and downward arrow RR basic residue sites, consistent with the cleavage specificities of the chromaffin granule cysteine protease "PTP" that participates in proenkephalin processing. These findings demonstrate that production of catestatin involves cleavage of CgA at paired basic and monobasic residues, necessary steps for catestatin peptide regulation of nicotinic cholinergic-induced catecholamine release.  相似文献   

4.
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.  相似文献   

5.
The cyanogen bromide fragment, N-DSK, containing the NH2-terminal portions of the three chains of fibrinogen, was found to exist in dimeric and polymeric forms. These different forms gave rise to identical chain fragments on reduction and alkylation. The B beta chain of N-DSK from fibrinogen and the beta chain of N-DSK from fibrin were isolated and characterized. The B beta chain fragment has a blocked NH2-terminal residue, and fibrinopeptide B is released on digestion with thrombin. The beta chain fragment has glycine as NH2-terminal residue. The molecular weight of the B beta chain fragment is 12200 as determined by ultracentrifugal analysis. Gel electrophoresis in sodium dodecyl sulphate gave the molecular weights of 14000 and 13000 for the B beta chain and beta chain fragments, respectively. The NH2-terminal B beta chain fragment consists of 118 amino acid residues and the beta chain fragment of 104 residues. The amino acid sequence of beta chain fragment is identical to B beta chain fragment except for the fibrinopeptide B portion. The isolation of a B beta-related fragment (B beta +), with a molecular weight of 30000, is also reported. The presence of B beta + was explained on the basis of incomplete cleavage at the Met-118 residue during treatment with cyanogen bromide. Some functional aspects of the B beta chain fragment are discussed.  相似文献   

6.
Protein-tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling and a novel therapeutic target for the treatment of type 2 diabetes, obesity, and other associated metabolic syndromes. Because PTP1B regulates multiple signal pathways and it can both enhance and antagonize a cellular event, it is important to establish the physiological relevance of PTP1B in these processes. In this study, we utilize potent and selective PTP1B inhibitors to delineate the role of PTP1B in integrin signaling. We show that down-regulation of PTP1B activity with small molecule inhibitors suppresses cell spreading and migration to fibronectin, increases Tyr(527) phosphorylation in Src, and decreases phosphorylation of FAK, p130(Cas), and ERK1/2. In addition, PTP1B "substrate-trapping" mutants bind Tyr(527)-phosphorylated Src and protect it from dephosphorylation by endogenous PTP1B. These results establish that PTP1B promotes integrin-mediated responses in fibroblasts by dephosphorylating the inhibitory pTyr(527) and thereby activating the Src kinase. We also show that PTP1B forms a complex with Src and p130(Cas), and that the proline-rich motif PPRPPK (residues 309-314) in PTP1B is essential for the complex formation. We suggest that the specificity of PTP1B for Src pTyr(527) is mediated by protein-protein interactions involving the docking protein p130(Cas) with both Src and PTP1B in addition to the interactions between the PTP1B active site and the pTyr(527) motif.  相似文献   

7.
Recent studies have shown that selection of proteins for degradation by the ubiquitin system occurs most probably by binding to specific sites of the ubiquitin-protein ligase, E3. A free alpha-NH2 residue of the substrate is one important determinant recognized by the ligase. Selective binding sites have been described for basic and bulky-hydrophobic NH2 termini (Reiss, Y., Kaim, D., and Hershko, A. (1988) J. Biol. Chem. 263, 2693-2698) and for alanine, serine, and threonine at the NH2-terminal position (Gonda, D. K., Bachmair, A., Wünning, I., Tobias, J. W., Lane, W. S., and Varshavsky, A. (1989) J. Biol. Chem. 264, 16700-16712). Proteins with acidic NH2-terminal residues are degraded by the ubiquitin system only following conversion of the acidic residue to a basic residue by the addition of an arginine moiety (Ferber, S., and Ciechanover, A. (1987) Nature 326, 808-811). Although the enzymes involved in this post-translational modification have been characterized, the underlying mechanism has been obscure. By using a chemical cross-linking technique, we demonstrate that proteins with acidic NH2 termini do not bind to E3 without prior modification of this residue by the addition of arginine. In contrast, proteins with a basic NH2-terminal residue bind to the ligase without any modification. The recognition of acidic NH2-terminal substrates by E3 is dependent upon the addition of all the components of the modifying machinery, arginyl-tRNA-protein transferase, arginyl-tRNA synthetase, tRNA, and arginine. The ligase-bound modified proteins are converted to ubiquitin conjugates in a "pulse-chase" experiment, indicating that the binding is functional and that the enzyme-substrate complex is an obligatory intermediate in the conjugation process. Chemical modification of the carboxyl groups, which results in their neutralization, generates substrates that bind to E3 without modification. This finding suggests that the amino-terminal binding site of E3 is negatively charged, and only positively charged amino-terminal residues may bind to it. Negatively charged (acidic) NH2-terminal residues will bind only following neutralization or reversal of the charge.  相似文献   

8.
Poly(A)-containing RNA was isolated from chicken liver and translated in a reticulocyte lysate protein-synthesizing system in the presence of radiolabeled amino acids. Chicken albumin was isolated from the translation products by immunoprecipitation and subjected to automated Edman radiosequencing. Comparison with the sequence of proalbumin showed that the translocation product (preproalbumin) contains an NH2-terminal extension of 18 amino acid residues. The NH2-terminal sequence of chicken preproalbumin was as follows: Met-18-Lys-Asn-Val-15-Thr-Leu-Ile-Ser-Phe-10-Ile-Phe-Leu-Phe-Ser-5-Ser-Ala-Thr- Ser-1-Arg1, where Arg1 represents the NH2-terminal residue of proalbumin. This NH2-terminal extension is very rich in hydrophobic amino acid residues and is similar to the signal sequences found in other secreted proteins. The signal sequence of chicken preproalbumin shows considerable homology with the signal sequences of rat and bovine preproalbumins, but little homology with the signal sequences of other chicken preproteins.  相似文献   

9.
Inhibitory potencies were compared of several mono- and dicarboxy-based pTyr mimetics in Grb2 SH2 domain versus PTP1B assays. Although in both systems pTyr residues provide critical binding elements, significant differences in the manner of recognition exist between the two. This is reflected in the current study, where marked variation in relative potencies was observed between the two systems. Of particular note was the poor potency of all monocarboxy-based pTyr mimetics against PTP1B when incorporated into a hexapeptide platform. The recently reported high PTP1B inhibitory potency of similar phenylphosphate mimicking moieties displayed in small molecule, non-peptide structures, raises questions on the limitations of using peptides as platforms for pTyr mimetics in the discovery of small molecule inhibitors.  相似文献   

10.
Peptide neurotransmitters and hormones are synthesized as protein precursors that require proteolytic processing to generate smaller, biologically active peptides that are secreted to mediate neurotransmission and hormone actions. Neuropeptides within their precursors are typically flanked by pairs of basic residues, as well as by monobasic residues. In this review, evidence for secretory vesicle cathepsin L and Arg/Lys aminopeptidase as a distinct proteolytic pathway for processing the prohormone proenkephalin is presented. Cleavage of prohormone processing sites by secretory vesicle cathepsin L occurs at the NH2-terminal side of dibasic residues, as well as between the dibasic residues, resulting in peptide intermediates with Arg or Lys extensions at their NH2-termini. A subsequent Arg/Lys aminopeptidase step is then required to remove NH2-terminal basic residues to generate the final enkephalin neuropeptide. The cathepsin L and Arg/Lys aminopeptidase prohormone processing pathway is distinct from the proteolytic pathway mediated by the subtilisin-like prohormone convertases 1/3 and 2 (PC1/3 and PC2) with carboxypeptidase E/H. Differences in specific cleavage sites at paired basic residue sites distinguish these two pathways. These two proteolytic pathways demonstrate the increasing complexity of regulatory mechanisms for the production of peptide neurotransmitters and hormones.  相似文献   

11.
Previous studies have indicated that at least part of the selection of proteins for degradation takes place at a binding site on ubiquitin-protein ligase, to which the protein substrate is bound prior to ligation to ubiquitin. It was also shown that proteins with free NH2-terminal alpha-NH2 groups bind better to this site than proteins with blocked NH2 termini (Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986) J. Biol. Chem. 261, 11992-11999). In the present study, we used simple derivatives of amino acids, such as methyl esters, hydroxamates, or dipeptides, to examine the question of whether the protein binding site of the ligase is able to distinguish between different NH2-terminal residues of proteins. Based on specific patterns of inhibition of the binding to ligase by these derivatives, three types of protein substrates could be distinguished. Type I substrates are proteins that have a basic NH2-terminal residue (such as ribonuclease and lysozyme); these are specifically inhibited by derivatives of the 3 basic amino acids (His, Arg, and Lys) with respect to degradation, ligation to ubiquitin, and binding to ligase. Type II substrates (such as beta-lactoglobulin or pepsinogen, that have a Leu residue at the NH2 terminus) are not affected by the above compounds, but are specifically inhibited by derivatives of bulky hydrophobic amino acids (Leu, Trp, Phe, and Tyr). In these cases, the amino acid derivatives apparently act as specific inhibitors of the binding of the NH2-terminal residue of proteins, as indicated by the following observations: (a) derivatives in which the alpha-NH2 group is blocked were inactive and (b) in dipeptides, the inhibitory amino acid residue had to be at the NH2-terminal position. An additional class (Type III) of substrates comprises proteins that have neither basic nor bulky hydrophobic NH2-terminal amino acid residues; the binding of these proteins is not inhibited by homologous amino acid derivatives that have NH2-terminal residues similar to that of the protein. It is concluded that Type I and Type II proteins bind to distinct and separate subsites of the ligase, specific for basic or bulky hydrophobic NH2-terminal residues, respectively. On the other hand, Type III proteins apparently predominantly interact with the ligase at regions of the protein molecule other than the NH2-terminal residue.  相似文献   

12.
The complete amino acid sequence of bovine brain DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein, which is a potent and specific inhibitor of the catalytic subunit of protein phosphatase-1, has been determined. The S-14C-carboxymethylated protein was subjected to enzymatic cleavage by endoproteinase Lys-C, endoproteinase Arg-C, trypsin, chymotrypsin, and Staphylococcus aureus V8 protease, and to chemical cleavage by cyanogen bromide. The overlapping sets of peptides were purified by high performance liquid chromatography and subjected to amino acid sequencing by automated Edman degradation to deduce the complete sequence. The protein consists of a single NH2-terminal blocked polypeptide chain of 202 residues, with a calculated molecular mass of 22,591 daltons, excluding the unidentified NH2-terminal blocking group. This molecular mass is significantly lower than earlier estimates based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis or hydrodynamic measurements. The threonine residue that is phosphorylated by cyclic AMP-dependent protein kinase (Hemmings, H. C., Jr., Williams, K. R., Konigsberg, W. H., and Greengard, P. (1984) J. Biol. Chem. 259, 14486-14490), and that must be phosphorylated for the expression of inhibitory activity, is located at position 34. The molecule contains only 1 cysteine residue and 1 tryptophan residue, at positions 72 and 161, respectively. DARPP-32 is very hydrophilic, and contains a stretch of 16 consecutive acidic residues from position 119 to 134. The predicted secondary structure suggests the presence of 47% alpha-helix, 7% beta-sheet, and 46% random coil, with 11 beta-turns. Comparison of the complete amino acid sequence of bovine DARPP-32 with that of rabbit skeletal muscle protein phosphatase inhibitor-1 revealed a significant amount of sequence identity in the NH2-terminal regions of these two proteins. The active region of inhibitor-1 has been localized to an NH2-terminal fragment (Aitken, A., and Cohen, P. (1982) FEBS Lett. 147, 54-58), the part of the molecule that is most similar to DARPP-32. These data suggest that these two protein phosphatase inhibitors may share a common structural basis for their inhibitory activity and may be related by a common ancestral gene.  相似文献   

13.
The protein tyrosine phosphatase PTP1B is responsible for negatively regulating insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor kinase (IRK) activation segment. Here, by integrating crystallographic, kinetic, and PTP1B peptide binding studies, we define the molecular specificity of this reaction. Extensive interactions are formed between PTP1B and the IRK sequence encompassing the tandem pTyr residues at 1162 and 1163 such that pTyr-1162 is selected at the catalytic site and pTyr-1163 is located within an adjacent pTyr recognition site. This selectivity is attributed to the 70-fold greater affinity for tandem pTyr-containing peptides relative to mono-pTyr peptides and predicts a hierarchical dephosphorylation process. Many elements of the PTP1B-IRK interaction are unique to PTP1B, indicating that it may be feasible to generate specific, small molecule inhibitors of this interaction to treat diabetes and obesity.  相似文献   

14.
Fragment D has been isolated as an apparently single molecular weight species (molecular weight about 100,000) from plasmin digests of humman fibrinogen, using a combination of affinity chromatography on insolubilized "fibrin monomer" and gel filtration. This fragment consists of three chains with molecular weights of 15,000 (Dbeta), 42,500 (Dgamma1) or 39,500 (Dgamma2), and 14,000 (Dalpha) held together by disulfide bonds. The S-carboxymethyl derivatives of the chains have been separated by gel filtration and ion exchange chromatography, and their identity has been confirmed by peptide mapping and immunological analysis. The chain with a molecular weight of 45,000 is a fragment of the Bbeta chain of fibrinogen. The chain derived from the gamma chain of fibrinogen occurred in two molecular forms having molecular weight 42,500 and 39,500. The chain derivative with molecular weight 14,000 is most likely derived from the Aalpha chain of fibrinogen. The chains were characterized by NH2-terminal sequence analysis, amino acid composition, and carbohydrate staining. The two molecular analysis, amino acid composition, and carbohydrate staining. The two molecular forms of the gamma chain appeared to be identical except for an NH2-terminal peptide extension of 23 amino acid residues in the longer chain. The latter has sequences in common with the COOH-terminal part of the gamma chain of the NH2-terminal disulfide knot (BROMBACK, B., BRONDAHL, N. J., HESSEL, B., IWANAGA, S., and WALLEN, P. (1973) J. Biol. Chem. 248, 5806-5820); its NH2-terminal residue being Ala-63 of the gamma chain of fibrinogen.  相似文献   

15.
An "inverse alanine scanning" peptide library approach has been developed to assess the substrate specificity of protein-tyrosine phosphatases (PTPases). In this method each Ala moiety in the parent peptide, Ac-AAAApYAAAA-NH(2), is separately and sequentially replaced by the 19 non-Ala amino acids to generate a library of 153 well defined peptides. The relatively small number of peptides allows the acquisition of explicit kinetic data for all library members, thereby furnishing information about the contribution of individual amino acids with respect to substrate properties. The approach was applied to protein-tyrosine phosphatase 1B (PTP1B) as a first example, and the highly potent peptide substrate Ac-ELEFpYMDYE-NH(2) (k(cat)/K(m) 2.2 +/- 0.05 x 10(7) M(-1) s(-1)) has been identified. More importantly, several heretofore unknown features of the substrate specificity of PTP1B were revealed. This includes the ability of PTP1B to accommodate acidic, aromatic, and hydrophobic residues at the -1 position, a strong nonpreference for Lys and Arg residues in any position, and the first evidence that residues well beyond the +1 position contribute to substrate efficacy.  相似文献   

16.
N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be the most potent inhibitors. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate and N-bromosuccinimide.  相似文献   

17.
Previously, we produced the whole extracellular region of metabotropic glutamate receptor subtype 1 (mGluR1) in a soluble form. The soluble receptor retained a ligand affinity comparable with that of the full-length membrane-bound receptor and formed a disulfide-linked dimer. Here, we have identified a cysteine residue responsible for the intermolecular disulfide bond and determined domain organization of the extracellular region of mGluR1. A mutant, C140A, was a monomer under nonreduced conditions by SDS-polyacrylamide gel electrophoresis; however, C140A was eluted at the position similar to that of mGluR113, the wild type soluble receptor, by size exclusion column chromatography. Furthermore, C140A bound a ligand, [(3)H]quisqualate, with an affinity similar to that obtained by mGluR113. Oocytes injected with RNA for full-length mGluR1 containing C140A mutation showed responses to ligands at magnitudes similar to those with wild type full-length RNA. Thus, elimination of the disulfide linkage did not perturb the dimer formation and ligand signaling, suggesting that cryptic dimer interface(s) possibly exist in mGluR1. Limited proteolysis of the whole extracellular fragment (residue 33-592) revealed two trypsin-sensitive sites, after the residues Arg(139) and Arg(521). A 15-kDa NH(2)-terminal proteolytic fragment (residue 33-139) was associated with the downstream part after the digestion. Arg(521) was located before a cysteine-rich stretch preceding the transmembrane region. A new shorter soluble receptor (residue 33-522) lacking the cysteine-rich region was designed based on the protease-sensitive boundary. The purified receptor protein gave a K(d) value of 58.1 +/- 0.84 nm, which is compatible to a reported value of the full-length receptor. The B(max) value was 7.06 +/- 0. 82 nmol/mg of protein. These results indicated that the ligand-binding specificity of mGluR1 is confined to the NH(2)-terminal 490-amino acid region of the mature protein.  相似文献   

18.
The binding of tyrosine phosphorylated targets by SH2 domains is required for propagation of many cellular signals in higher eukaryotes; however, the determinants of phosphotyrosine (pTyr) recognition by SH2 domains are not well understood. In order to identify the attributes of pTyr required for high affinity interaction with SH2 domains, the binding of the SH2 domain of the Src kinase (Src SH2 domain) to a dephosphorylated peptide, a phosphoserine-containing peptide, and the amino acid pTyr was studied using titration calorimetry and compared with the binding of a high affinity tyrosyl phosphopeptide. The dephosphorylated peptide and the phosphoserine containing peptide both bind extremely weakly to the Src SH2 domain (DeltaGo (dephosphorylated)=-3.6 kcal/mol, DeltaGo (phosphoserine) >-3.7 kcal/mol); however, the DeltaGo value of pTyr binding is more favorable (-4.7 kcal/mol, or 50 % of the entire binding free energy of a high affinity tyrosyl phosphopeptide). These results indicate that both the phosphate and the tyrosine ring of the pTyr are critical determinants of high affinity binding. Alanine mutagenesis was also used to evaluate the energetic contribution to binding of ten residues located in the pTyr-binding site. Mutation of the strictly conserved Arg betaB5 resulted in a large increase in DeltaGo (DeltaDeltaGo=3.2 kcal/mol) while elimination of the other examined residues each resulted in a significantly smaller (DeltaDeltaGo<1.4 kcal/mol) reduction in affinity, indicating that Arg betaB5 is the single most important determinant of pTyr recognition. However, mutation of Cys betaC3, a residue unique to the Src SH2 domain, surprisingly increased affinity by eightfold (DeltaDeltaGo=-1.1 kcal/mol). Using a double mutant cycle analysis, it was revealed that residues of the pTyr-binding pocket are not coupled to the peptide residues C-terminal to the pTyr. In addition, comparison of each residue's DeltaDeltaGo value upon mutation with that residue's sequence conservation among SH2 domains revealed only a modest correlation between a residue's energetic contribution to pTyr recognition and its conservation throughout evolution. The results of this investigation highlight the importance of a single critical interaction, the buried ionic bond between the phosphate of the pTyr and Arg betaB5 of the SH2 domain, driving the binding of SH2 domains to tyrosine phosphorylated targets.  相似文献   

19.
A series of novel (3′-amino-[1,1′-biphenyl]-4-yl) sulfamic acid derivatives were designed as nonphosphonate-based phosphotyrosy (pTyr) mimetics, synthesized and screened for use as HPTPβ inhibitors. Compounds C22 and C2 showed favorable HPTPβ inhibitory activity and better selectivity for HPTPβ than for PTP1B and SHP2. Docking results suggested that compounds C2 and C22 could not only efficiently fit into the catalytic site of the HPTPβ enzyme but also interact with the Lys1807, Arg1809 and Lys1811 residues of the secondary binding site, which was next to the catalytic center of the enzyme. The mode of interaction of the synthesized compound with the protein was different from the one found in a complex crystal of small molecules with HPTPβ (2I4H), in which the inhibitory molecule formed hydrogen bonds with the Gln1948 and Asn1735 residues of the secondary binding site.  相似文献   

20.
Rat kidney microsomal UDP-glucuronyltransferase activities toward phenoic xenobiotics were enhanced about 4-5-fold by treatment of the animal with beta-naphthoflavone. The transferase activity toward serotonin, an endogenous substrate, was also enhanced about 7.5-fold. A form of UDP-glucuronyltransferase was purified from kidney microsomes of beta-naphthoflavone-treated rat by solubilization with sodium cholate and two steps of column chromatography, the first with DEAE-Toyopearl (fast flow rate liquid chromatography:FFLC) and the second with UDP-hexanolamine Sepharose 4B (affinity chromatography). These procedures gave about 39-fold purification and 11.5% yield of the transferase activity toward 1-naphthol. The preparation, tentatively termed "GT-2," was highly purified as judged from the single protein band (Mr 54,000) on sodium dodecylsulfate (SDS)-polyacrylamide slab gel electrophoresis. It catalyzed the glucuronidation of not only phenolic xenobiotics such as 1-naphthol, 4-nitrophenol, and 4-methylumbelliferone but also serotonin. From the result that apparent molecular weight of GT-2 was reduced to 50,000 by endo-beta-N-acetylglucosaminidase H (Endo H)-treatment, GT-2 was found to be a 50,000 Da polypeptide carrying "high mannose" type oligosaccharide chain(s). The NH2-terminal sequence of 20 residues of GT-2 was determined to be Asp-Lys-Leu-Leu-Val-Val-Pro-Gln-Asp-Gly-Ser-His-Trp-Leu-Ser-Met-Lys-Glu- Ile-Val . It was observed that there are two amino acids substitutions in the seven NH2-terminal residues in comparison with GT-1, which was purified from liver microsomes of 3-methylcholanthrene-treated rat. The NH2-terminal sequence of GT-2 was found to be homologous with the NH2-terminal sequence from the 26th to 46th amino acid residue of various UDP-glucuronyltransferase cloned by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号