首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In order to study the possible functional relationship between the adrenal gland and the subcommissural organ (SCO) in the lizard Lacerta s. sicula Raf., ACTH was administered to some specimens of this species in January when both the adrenal gland and the subcommissural organ have a very low activity. In comparison to untreated controls, the adrenals of animals treated with ACTH showed clear signs of stimulation, presenting enlarged blood vessels, very few lipid droplets, numerous polymorphic mitochondria and abundant tubular smooth endoplasmic reticulum. In addition, a distinct increase in secretory material was observed in the subcommissural cells of specimens treated with ACTH. These cells showed large cisternae of the rough endoplasmic reticulum filled with granular material in the basal region, numerous secretory granules of two types in the apical region and a reduced number of microvilli on the free cell surface. These findings, together with the results of preceding studies, lead the authors to the consideration that steroid hormones might play a role in the regulation of the secretory activity of the SCO.  相似文献   

2.
Harald  Kryvi 《Journal of Zoology》1976,180(2):253-261
The purely embryonic external gill filaments of sharks consist of a single capillary loop, covered by a two-layered epithelium with short microvilli. Towards the end of the embryonic period, the epithelial cells are filled with fibrils, about 10 nm in diameter, and mitochondria, endoplasmic reticulum and Golgi bodies disappear. The basal lamina increases in thickness, and collagen fibrils accumulate beneath. Numerous dense vesicles appear in the endothelial cells.  相似文献   

3.
Scanning electron microscopy shows that lingual papillae occur all over the dorsal surface of the tongue of the freshwater turtle, Geoclemys reevesii. The surface of each papilla is composed of compactly distributed hemispherical bulges, each composed of a single cell. Microvilli are widely distributed over the surface of cells. Histological examination reveals that the connective tissue penetrates deep into the center of papillae and that the epithelium is stratified columnar. Under the transmission electron microscope, the cells of the basal and the deep intermediate layers of the epithelium appear rounded. A large nucleus lies in the central area of each cell. The cytoplasm contains mitochondria, endoplasmic reticulum and free ribosomes. The cell membrane form numerous processes. The shallow intermediate layer contains two types of cell. The cytoplasm of the first has numerous fine granules, in addition to mitochondria, ribosomes, and endoplasmic reticulum. The other type of cell contains highly electron-dense granules. The surface layer shows two cell types. One type consists of typical mucous cells. The other type of cell contains fine, electron-lucent granules. The latter cells lie on the free-surface side, covering the mucous cells, and have microvilli on their free surfaces.  相似文献   

4.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

5.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

6.
牦牛卵泡细胞及其卵母细胞不同发育时期的结构变化   总被引:1,自引:0,他引:1  
雍艳红  余四九  巨向红  崔燕 《动物学报》2005,51(6):1050-1057
采集成年母牦牛卵巢,通过光镜和电镜对牦牛卵泡及其卵母细胞不同发育时期的结构变化进行了观察。结果发现当卵母细胞被单层立方卵泡细胞包围时,微绒毛开始出现,而皮质颗粒、透明带则在包被2-4层卵泡细胞时开始出现。随着卵母细胞的继续发育,透明带增厚,微绒毛由粗短变为细长,密度增加;皮质颗粒、线粒体、滑面内质网等细胞器的数目不断增加,并逐渐移行到质膜下;在移行的过程中,皮质颗粒成团存在。在囊状卵泡中,卵母细胞皮质颗粒呈线形分布于质膜下,线粒体、滑面内质网又移向胞质中央。卵母细胞借助微绒毛穿过透明带与卵泡细胞胞质突起相联系。结果证明牦牛卵泡和卵母细胞不同发育时期的结构变化与其它哺乳动物的基本相似。  相似文献   

7.
Summary The embryo ofOncopeltus fasciatus forms a typical secondary dorsal organ (SDO). It develops after katatrepsis from the contracting serosa, the cells of which decrease in diameter but increase considerably in height. After 66 h, the SDO represents a protrusion of the serosal epithelium above the head and is then reduced to a disc-shaped formation, which sinks into the yolk, where it disintegrates after 80 h.During its typical expression, between 66 and 78 h, the SDO shows a zonal arrangement of its cell organelles. The nucleus, which is located in the basal cell region, has a very irregular outline and includes several nucleoli and globular inclusion bodies. Rough and smooth ER are well developed around the nucleus and suggest the involvement of the organ in protein secretion as well as in lipid metabolism. Electron-lucent vacuoles and electron-dense granules, sometimes enclosed in the vacuoles, accumulate in the apical cell region, and are obviously extruded into the peripheral (extraembryonic) space. The formation of intercellular clefts and delicate cytoplasmic extensions facing the yolk and microvilli facing the periphery evidence a transporting function of the epithelium. Blisters intercalated in extended junctional complexes between apical cell regions point to the transport of solutes.Because of the similarities of the processes observed in the SDO and in Malpighian tubules of larvae, an excretory function of the SDO is suggested. Final products of yolk and embryo are apparently transported to the extraembryonic space, where they accumulate during embryogenesis.Phylogeny, relationship, and function of the different embryonic glands in Arthropoda (primary and secondary DO and pleuropodia) are discussed.Dedicated to Prof. Dr. B. Scharrer on the occasion of her birthdaySupported by the Deutsche ForschungsgemeinschaftI am grateful to Miss K. Schmidtke and Mrs. M. Ullmann for technical assistance  相似文献   

8.
Summary The ependymal cells of the toad subcommissural organ produce pale and dense secretory granules. Both types of granules are mainly concentrated in the apical cytoplasm and in the perinuclear region. Pale and dense granules are synthesized by and packed in the rough endoplasmic reticulum, bypassing the step of the Golgi apparatus. The apical cytoplasm of some subcommissural ependymal cells protrudes into the ventricle. All the cells project a few cilia and numerous slender, long microvilli into the ventricular lumen.Contacting the cilia and the microvilli there is a filamentous material identical to that observed in the fibre of Reissner at the aqueduct of Sylvius. In addition to filaments, the fibre of Reissner contains vacuolar formations. The fibre is surrounded by numerous ependymal cilia, some of which are embedded in the filamentous material of the fibre.The presence of numerous microvilli projected into the ventricle and the large number of vesicles scattered in the supranuclear cytoplasm seem to indicate that the subcommissural organ may have absorption functions. The fact that the intercellular space of the ependymal layer of the subcommissural organ is not separated from the ventricular lumen by tight junctions but by zonulae adhaerentes could indicate that the cerebrospinal fluid penetrates these intercellular spaces bathing all sides of the ependymal cells. The presence in the ependymal cells of vesicles opening into the intercellular space would be in agreement with the latter possibility.There are some ultrastructural differences between the ependymal cells of the cephalic end of the subcommissural organ and those of the caudal end. A critical analysis of Reissner's fibre formation is made.This investigation was partially supported by a Grant of the Wellcome Trust Foundation.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. The author wishes to thank the valuable help of Mr. P. Heap.  相似文献   

9.
Isolated frog urinary bladder epithelial cells, upon dissociation lose their polarity and develop microridges and occasional microvilli in a global fashion. These cells, when exposed only to isotonic Ringer's solution manifest a membrane conformation with smooth discontinuous microridges, a cytoplasm with numerous free ribosomes, rough ER, thin Golgi cisternae, mitochondria, small vacuoles, electron-dense granules, few microtubules, and numerous microfilaments and intermediate filaments with an apparent random distribution, the dissociated cells, when treated with ADH or calcium ionophore (A23187), have the appearance of numerous elongated microvilli over the entire cell surface. The cytoplasm, under these conditions, is occupied by large vacuoles with a distribution of long profiles of aggrephores and associated vesicles. The peripheral cytoplasm as well as the cavities of the elongated microvilli of these cells contain large concentrations of microfilaments often showing a strong axial orientation to the long axis of the microvilli. Many of these filamentous elements appear in contact with the apical membrane of these microvilli with an alignment with the external glycocalyx. There is an indication that these morphocytological changes as revealed by SEM and TEM studies, correlated with a redistribution and realignment of microfilaments and possibly microtubules as detected by fluorescent microscopy using immunofluorescent antibody labeling for actin and tubulin. Cells treated with verapamil, a calcium antagonist, presented dwarf and stout microvilli with little detectable alterations in the cytoplasmic compositions from that of non-hormonal treated cells. Verapamil prevented ADH induction of microvilli, with the membrane, under these conditions, appearing as compact microridges. The results indicate that calcium ionophore, like ADH, produces intense formation of microvilli in dissociated cells, mobilization and realignment of microfilaments, microtubules, increase in the density of vesicles, aggrephores and possibly secretory granules, whereas the calcium antagonist, verapamil, opposes these actions. The results suggests a prominent role of calcium in the morphological changes induced by ADH.  相似文献   

10.
有假说认为,卵母细胞在体外培养过程中,如果延长GV期,可促进卵母细胞进一步成熟,因而提高发育潜能。采用山羊半卵泡和卵母细胞共培养,抑制卵母细胞GVBD发生,从而延长GV期。比较了共培养前后和恢复成熟培养后卵母细胞的超微结构变化,其目的从亚细胞水平寻找卵母细胞进一步成熟的证据。研究发现,常规成熟培养:有卵周隙存在,但不贯通,局部区域卵膜与透明带结合紧密;部分皮质区尚有细胞器存在;微绒毛大部分从透明带中撤出,倒伏于质膜表面,数量较多,形态较为粗大;皮层颗粒质膜下部分单层分布,部分散布于皮质区;线粒体均匀散布于卵质中央区。共培养前:卵母细胞的卵周隙尚未形成,微绒毛没有从透明带中撤出;线粒体等细胞器分布于皮质区,皮层颗粒成簇状分布,皮质区富含细胞器。共培养后:局部形成卵周隙,微绒毛已自透明带中撤出,数量较多,垂直或倒伏于卵膜表面;线粒体以簇状分批开始内移,皮层颗粒已部分单层分布于质膜下,部分皮质区缺乏细胞器。恢复成熟培养后:卵周隙进一步扩大并且贯通,微绒毛数量减少并且绝大多数垂直于卵膜;线粒体在卵质中央区均匀分布,皮层颗粒卵膜下单层分布,大部分皮质区无细胞器存在。利用“两步法”培养得到的卵母细胞与体外常规成熟培养的卵母细胞相比,更有利于皮层颗粒的质膜下单层分布,卵母细胞卵周隙的形成与贯通,微绒毛数量减少和垂直于卵膜表面,无细胞器皮层区的进一步形成。因此,更有利于卵母细胞胞质的进一步成熟。  相似文献   

11.
The appearance and development of the dorsal organ of collembolan embryos were analyzed by electron microscopy, to get a better insight into the cytodifferentiation and properties of the cells that constitute the organ.When the blastular epithelium surrounds the yolk as a thick cellular covering, the veryfirst rudiment of the dorsal organ can be detected as a somewhat thicker calotte of cells, particularly rich in lipid globules. Rapid morphogenetic processes result in the concentration of this first rudiment into a lens-shaped primordium, whose median cells sink into the yolk at their basal poles. All the cells of the dorsal organ contribute by their apical surfaces to the secretion of the first blastodermic membrane, a very atypical equivalent of an external epicuticle, then to the deposition of the outer layers of the second blastodermic cuticle.The dorsal organ takes the form of a plug and its central cells become columnar. Their considerable growth is marked by the internal presence of numerous regularly grouped microtubules, that will later contribute to the mechanical support of their apical processes. The blastoderm and the dorsal organ then secrete the procuticular portion of the second blastodermic cuticle (folded membrane of other authors). This inner part shows a very regular alternation of dense and less dense layers, eventual clues for a rapid, non-circadian, rhythm of activity in the cells.When the embryonic band becomes molded, the central cells of the dorsal organ send out very long apical processes, whose terminal contacts with the second cuticle, now swollen apart from the surface of the egg, in our opinion might play a role in the control of cuticle permeability. When the embryo grows older, the dorsal organ gets into its presumed functional phase; meanwhile, its constituent cells become diversified into several lines, according to a concentric pattern. The central cells are then surrounded by two cellular rings whose components show different amplifications, leaflets and microvilli, of their apical membranes. These cells are eventually supposed to play a role in exchanges with the external fluid.The involution of the dorsal organ begins at a relatively young stage of the embryonic band and continues during embryonic organogenesis.  相似文献   

12.
东方粉蝶幼虫有6条马氏管,每条管可以简易地分为四个部分:直肠导,迴肠纲,黄色段和白色段,所有这四个部分首要细胞的顶面都折叠形成微绒毛(特别是迴肠纲,其顶面进一步折叠形成微道),线粒体几乎延伸到微绒毛顶端。在基部,大量基膜折叠形成细胞内管道,向细胞顶部延伸。在细胞质中,有许多线粒体,糙面内质纲和空泡。每一个细胞的细胞核中有一些散的染色质物质,并且外形呈不规则形。在黄色段首要细胞中,有大量证明是由矿物质沉积形成的电子密集颗粒,及猜疑为微孢子原虫的细胞质囊球。上述每段可能具有的功能会在这报告中讨论。  相似文献   

13.
P Nemanic 《Tissue & cell》1975,7(3):453-468
The compound eyes of the terrestrial isopod Porcellio scaber comprises about 20 ommatidia. The dioptric apparatus of each ommatidia includes a biconvex corneal lens and a spherical crystalline cone that is secreted by two cone cells. The closed rhabdom is formed by the microvillar extensions of seven pigmented retinula cells and one apical eccentric cell. All retinular axons exit the eye in one bundle. During dark-adaption pigment granules in the retinula cells rapidly withdrew from around the rhabdom and the cell periphery, and migrated basally. Rhabdoms thickened because of movement of the microvilli, and mitochondria moved medially and basally. During light adaption these processes were reversed. Multivesicular bodies became less numerous and rough endoplasmic reticulum and ribosomes proliferated during the initial stages of light adaption.  相似文献   

14.
The epithelium of the rim of the octopus sucker is the site of several different types of primary receptors. One is a non-ciliated cell with unusual characteristics. (1) The surface of the cell is extremely irregular with finger-like extensions of cytoplasm, especially far reaching in the basal region. (2) The slender neck contains a canal whose apical opening is in contact with the environment. This canal is lined with microvilli and contains granular material in an electron-dense matrix. (3) Patches of presumed glycogen granules occur throughout the cell, being especially abundant in the outer reaches of the cytoplasmic extensions. Their presence, together with numerous mitochondria and free ribosomes, indicate a high intrinsic metabolism. (4) Small fascicles of microtubules are randomly situated throughout the perikaryon. They gather into a coherent system of larger and larger bundles which ultimately enter the axon leading from the cell. This axon extends some distance in the basal region of the epithelium before crossing the subepithelial space to enter the infundibular muscle. Possible functions of this cell are discussed. On the basis of its specific position on the sucker and its intrinsic morphology we suggest that it is a mechanoreceptor involved in shape and/or negative pressure discrimination.  相似文献   

15.
小鼠附睾头精子,其头部Ca~(2 )在顶体前区顶体外膜内侧结合最多,Ca~(2 )沉淀反应颗粒于该处呈连续层状。附睾头豚鼠精子其头部结合Ca~(2 )含量很少,且主要结合于顶体前区腹面顶体外膜内侧。小鼠附睾体和附睾尾精子Ca~(2 )的分布特征基本上和附睾头精子相同。但豚鼠附睾尾精子顶体外膜内侧无Ca~(2 )结合。和附睾头、附睾尾的附睾液相比,附睾体附睾液基质内具有大量Ca~(2 )存在。附睾体柱状上皮细胞的微绒毛切面上也具有Ca~(2 )沉淀反应颗粒,微绒毛可能与附睾液Ca~(2 )含量的调节有关。精子尾部Ca~(2 )主要分布于线粒体内,在质膜内、外两侧和线粒体外膜外侧也结合有少量的Ca~(2 )。和小鼠精子相比,豚鼠精子尾部线粒体内具有大量的Ca~(2 )。  相似文献   

16.
对水生萤火虫——条背萤Luciola substriata(Gorham)成虫和幼虫发光器的超微结构进行研究。结果表明,成虫发光器由明显的2层组成:反射层和发光层。反射层由排列紧密的“尿酸囊泡”构成,具有发达的气管结构,对光起反射作用;发光层由大量发光细胞构成,内含典型的发光颗粒、线粒体、内质网及大量糖原,该层通过发光细胞胞质内的生化反应而发光。2层均由非细胞层膜包被,间距25~30μm。发光器腹节由外向内依次为表皮、发光层、反射层和内部细胞层。幼虫发光器球形,由背射层和发光层构成,由非细胞层膜包被。背射层由单层柱状细胞构成,内含大量“尿酸囊泡”。发光层细胞膜相互绞缠,含有2种类型的发光颗粒:“致密”型和“凋亡”型,含有大量的线粒体和无定形颗粒,发光细胞之间分布着大量的气管、微气管及神经末梢,可观察到神经突触。与条背萤相比,陆生种成虫反射层和发光层均无非细胞层膜包被,2层间无明显间距,发光颗粒形状不规则,气管通常形成2分支;陆栖种幼虫发光层形状差异较大,背射层由单层或2~4层细胞构成;相似点在于,成虫发光器都由均由反射层和发光层构成,发光细胞内都含发光颗粒、线粒体及大量糖原,都具有发达的气管结构,发光颗粒相似。幼虫发光器都由背射层和发光层构成,都具有发达的气管和直接的神经支配,发光颗粒相似,都由非细胞层膜包被。  相似文献   

17.
This paper addresses morphogenetic processes and cell differentiation during embryogenesis of the brittle star Amphipholis kochii at the ultrastructural level. The radial cleavage is not strictly determined. Embryos are covered with a thick hyaline envelope and contain numerous yolk granules and small lipid drops. Blastulae feature a thick blastoderm with extensive intercellular cavities, which are retained in the crest epithelium of late gastrulae. Embryonic cells have single cilia with long cross-striated rootlets associated with the Golgi apparatus. Depolarized cells of the primary mesenchyme with a well-developed rough endoplasmic reticulum differentiate into sclerenchyme syncytium. Gastrulation occurs by invagination. Secondary mesenchymal cells emigrate from the archenteron tip to differentiate into amebocytes, which contain a well-developed Golgi apparatus and numerous mitochondria. The endoderm is formed of cubic cells with numerous yolk granules and rare microvilli. Flattened cells of the dorsal and ventral ectoderm contain a small amount of yolk. Yolk utilization during embryogenesis occurs by intracellular lysosomal digestion with selective exocytosis of toposomes.Original Russian Text Copyright © 2005 by Biologiya Morya, Gliznutsa, Dautov.  相似文献   

18.
The structure of the rat parietal cell was examined by electron microscopy. The intercellular and intracellular canalculi are lined by microvilli which are more numerous and larger than those of other gastric cells. The numerous mitochondria have closely packed cristae and a dense matrix containing opaque particles. The cytoplasmic vacuoles typical of parietal cells are part of a network of smooth surfaced tubules and vacuoles (the endoplasmic reticulum) which is intimately associated with the mitochondria and probably connected with the lumen of the canaliculi. Only a few dense particles are found attached to the surface of these tubules. The structure of the parietal cell is compared with that of other cells whose function also is transport of inorganic ions and water. Evidence is presented supporting the hypothesis that parietal cells differentiate from a less structurally specialized cell in the neck region of the gastric gland.  相似文献   

19.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

20.
Swiatek P 《Tissue & cell》2006,38(4):263-270
By the end of previtellogenesis, the oocytes of Glossiphonia heteroclita gradually protrude into the ovary cavity. As a result they lose contact with the ovary cord (which begins to degenerate) and float freely within the hemocoelomic fluid. The oocyte's ooplasm is rich in numerous well-developed Golgi complexes showing high secretory activity, normal and transforming mitochondria, cisternae of rER and vast amounts of ribosomes. The transforming mitochondria become small lipid droplets as vitellogenesis progresses. The oolemma forms microvilli, numerous coated pits and vesicles occur at the base of the microvilli, and the first yolk spheres appear in the peripheral ooplasm. A mixed mechanism of vitellogenesis is suggested. The eggs are covered by a thin vitelline envelope with microvilli projecting through it. The envelope is formed by the oocyte. The vitelline envelope is produced by exocytosis of vesicles containing two kinds of material, one of which is electron-dense and seems not to participate in envelope formation. The cortical ooplasm of fully grown oocytes contains many cytoskeletal elements (F-actin) and numerous membrane-bound vesicles filled with stratified content. Those vesicles probably are cortical granules. The follicle cells surrounding growing oocytes have the following features: (1) they do not lie on a basal lamina; (2) their plasma membrane folds deeply, forming invaginations which eventually seem to form channels throughout their cytoplasm; (3) the plasma membrane facing the ovary lumen is lined with a layer of dense material; and (4) the plasma membrane facing the oocyte forms thin projections which intermingle with the oocyte microvilli. In late oogenesis, the follicle cells detach from the oocytes and degenerate in the ovary lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号