首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.  相似文献   

2.
BBG2Na is a recombinant protein, composed in part of carrier protein BB and of the central conserved domain of the attachment glycoprotein G of human respiratory syncytial virus (HRSV) subgroup A. This protein is a potent vaccine candidate against HRSV. G2Na contains several contiguous B-cell epitopes, occupying sequential positions in the linear sequence of the protein. One of the epitopes contains four cysteines that are completely conserved in known strains of HRSV and form a 'cysteine noose' motif. In this study, we analysed circular dichroism (CD) spectra of BBG2Na and its B-cell epitopes. We also used NMR and molecular dynamics simulations to determine the three-dimensional structure of the cysteine noose domain. We observed significant structural differences related to the length of peptides containing the cysteine noose. These differences show good correlation with the immunogenic activity of the peptides. It is shown that a single Val(171) addition induces a pronounced structure stabilization of the cysteine noose peptide G4a (1-4/2-3) (residues 172-187), which is associated with a 100-fold increase in its antigenicity vis-à-vis a G-protein specific monoclonal antibody.  相似文献   

3.
F Zoulim  J Saputelli    C Seeger 《Journal of virology》1994,68(3):2026-2030
The X gene of the mammalian hepadnaviruses is believed to encode a protein of 17 kDa which has been shown to transactivate a wide range of viral and cellular promoters. The necessity for X gene expression during the viral life cycle in vivo has recently been suggested (H.-S. Chen, S. Kaneko, R. Girones, R. W. Anderson, W. E. Hornbuckle, B. C. Tennant, P. J. Cote, J. L. Gerin, R. H. Purcell, and R. H. Miller, J. Virol. 67:1218-1226, 1993). We have independently constructed two variants of woodchuck hepatitis virus (WHV) with mutations in the X coding region. Transient transfection of two different hepatoma cell lines showed that these WHV X gene mutants were competent for virus replication in vitro. To determine whether X expression was required for viral replication in vivo, we injected mutant and wild-type genomes into the livers of susceptible woodchucks. While the wild-type WHV genomes were infectious in all animals examined, the mutant genomes did not initiate a WHV infection in woodchucks. These results indicate that the X gene of the hepadnaviruses plays a major role in viral replication in vivo.  相似文献   

4.
Human respiratory syncytial virus (HRSV) is the most important cause of acute respiratory disease in infants. Two major subgroups (A and B) have been identified based on antigenic differences in the attachment G protein. Antigenic variation between and within the subgroups may contribute to reinfections with these viruses by evading the host immune responses. To investigate the circulation patterns and mechanisms by which HRSV-B viruses evolve, we analyzed the G protein genetic variability of subgroup B sequences isolated over a 45-year period, including 196 Belgian strains obtained over 22 epidemic seasons (1982 to 2004). Our study revealed that the HRSV-B evolutionary rate (1.95 x 10(-3) nucleotide substitutions/site/year) is similar to that previously estimated for HRSV-A (1.83 x 10(-3) nucleotide substitutions/site/year). However, natural HRSV-B isolates appear to accommodate more drastic changes in their attachment G proteins. The most recent common ancestor of the currently circulating subgroup B strains was estimated to date back to around the year 1949. The divergence between the two major subgroups was calculated to have occurred approximately 350 years ago. Furthermore, we have identified 12 positively selected sites in the G protein ectodomain, suggesting that immune-driven selective pressure operates in certain codon positions. HRSV-A and -B strains have similar phylodynamic patterns: both subgroups are characterized by global spatiotemporal strain dynamics, where the high infectiousness of HRSV permits the rapid geographic spread of novel strain variants.  相似文献   

5.
Bovine respiratory syncytial (BRS) virus causes a severe lower respiratory tract disease in calves similar to the disease in children caused by human respiratory syncytial (HRS) virus. While there is antigenic cross-reactivity among the other major viral structural proteins, the major glycoprotein, G, of BRS virus and that of HRS virus are antigenically distinct. The G glycoprotein has been implicated as the attachment protein for HRS virus. We have carried out a molecular comparison of the glycoprotein G of BRS virus with the HRS virus counterparts. cDNA clones corresponding to the BRS virus G glycoprotein mRNA were isolated and analyzed by dideoxynucleotide sequencing. The BRS virus G mRNA contained 838 nucleotides exclusive of poly(A) and had a major open reading frame coding for a polypeptide of 257 amino acid residues. The deduced amino acid sequence of the BRS virus G polypeptide showed only 29 to 30% amino acid identity with the G protein of either the subgroup A or B HRS virus. However, despite this low level of identity, there were strong similarities in the predicted hydropathy profiles of the BRS virus and HRS virus G proteins. A cDNA molecule containing the complete BRS virus G major open reading frame was inserted into the thymidine kinase gene of vaccinia virus by homologous recombination, and a recombinant virus containing the BRS virus G protein gene was isolated. This recombinant virus expressed the BRS virus G protein, as demonstrated by Western immunoblot analysis and immunofluorescence of infected cells. The BRS virus G protein expressed from the recombinant vector was transported to and expressed on the surface of infected cells. Antisera to the BRS virus G protein made by using the recombinant vector to immunize animals recognized the BRS virus attachment protein but not the HRS virus G protein and vice versa, confirming the lack of antigenic cross-reactivity between the BRS and HRS virus attachment proteins. On the basis of the data presented here, we conclude that BRS virus should be classified within the genus Pneumovirus in a group separate from HRS virus and that it is no more closely related to HRS virus subgroup A than it is to HRS virus subgroup B.  相似文献   

6.
Segments of the cystine noose-containing nonglycosylated central subdomain, residues 149-197, of the attachment (G) glycoprotein of human respiratory syncytial virus (HRSV) have been assessed for impact on the cytopathic effect (CPE) of respiratory syncytial virus (RSV). Nalpha-acetyl residues 149-197-amide (G149-197), G149-189, and G149-177 of the A2 strain of HRSV protected 50% of human epithelial HEp-2 cells from the CPE of the A2 strain at concentrations (IC(50)) between 5 and 80 microm. Cystine noose-containing peptides G171-197 and G173-197 did not inhibit the CPE even at concentrations above 150 microm. Systematic C- and N-terminal truncations from G149-189 and G149-177 and alanine substitutions within G154-177 demonstrated that residues 166-170 (EVFNF), within a sequence that is conserved in HRSV strains, were critical for inhibition. Concordantly, G154-177 of bovine RSV and of an antibody escape mutant of HRSV with residues 166-170 of QTLPY and EVSNP, respectively, were not inhibitory. Surprisingly, a variant of G154-177 with an E166A substitution had an IC(50) of 750 nm. NMR analysis demonstrated that G149-177 adopted a well-defined conformation in solution, clustered around F168 and F170. G154-170, particularly EVFNF, may be important in binding of RSV to host cells. These findings constitute a promising platform for the development of antiviral agents for RSV.  相似文献   

7.
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130-230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130-230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 μg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.  相似文献   

8.
SecA is an essential ATP-driven motor protein that binds to preproteins and the translocon to promote protein translocation across the eubacterial plasma membrane. Escherichia coli SecA contains seven conserved motifs characteristic of superfamily II of DNA and RNA helicases, and it has been shown previously to possess RNA helicase activity. SecA has also been shown to be an autogenous repressor that binds to its translation initiation region on secM-secA mRNA, thereby blocking and dissociating 30 S ribosomal subunits. Here we show that SecA is an ATP-dependent helicase that unwinds a mimic of the repressor helix of secM-secA mRNA. Mutational analysis of the seven conserved helicase motifs in SecA allowed us to identify mutants that uncouple SecA-dependent protein translocation activity from its helicase activity. Helicase-defective secA mutants displayed normal protein translocation activity and autogenous repression of secA in vivo. Our studies indicate that SecA helicase activity is nonessential and does not appear to be necessary for efficient protein secretion and secA autoregulation.  相似文献   

9.
10.
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK‐mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late‐stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti‐RSV strategies.  相似文献   

11.
Human respiratory syncytial virus (HRSV) and bovine RSV (BRSV) infect human beings and cattle in a species-specific manner. We have here analyzed the contribution of RSV envelope proteins to species-specific entry into cells. In contrast to permanent cell lines, primary cells of human or bovine origin, including differentiated respiratory epithelia, peripheral blood lymphocytes, and macrophages, showed a pronounced species-specific permissiveness for HRSV and BRSV infection, respectively. Recombinant BRSV deletion mutants lacking either the small hydrophobic (SH) protein gene or both SH and the attachment glycoprotein (G) gene retained their specificity for bovine cells, whereas corresponding mutants carrying the HRSV F gene specifically infected human cells. To further narrow the responsible region of F, two reciprocal chimeric F constructs were assembled from BRSV and HRSV F1 and F2 subunits. The specificity of recombinant RSV carrying only the chimeric F proteins strictly correlated with the origin of the membrane-distal F2 domain. A contribution of G to the specificity of entry could be excluded after reintroduction of BRSV or HRSV G. Virus with F1 and G from BRSV and with only F2 from HRSV specifically infected human cells, whereas virus expressing F1 and G from HRSV and F2 from BRSV specifically infected bovine cells. The introduction of G enhanced the infectiousness of both chimeric viruses to equal degrees. Thus, the role of the nominal attachment protein G is confined to facilitating infection in a non-species-specific manner, most probably by binding to cell surface glycosaminoglycans. The identification of the F2 subunit as the determinant of RSV host cell specificity facilitates identification of virus receptors and should allow for development of reagents specifically interfering with RSV entry.  相似文献   

12.
The design of attenuated vaccines for respiratory syncytial virus (RSV) historically focused on viruses made sensitive to physiologic temperature through point mutations in the genome. These prototype vaccines were not suitable for human infants primarily because of insufficient attenuation, genetic instability, and reversion to a less-attenuated phenotype. We therefore sought to construct novel attenuated viruses with less potential for reversion through genetic alteration of the attachment G protein. Complete deletion of G protein was previously shown to result in RSV strains overly attenuated for replication in mice. Using reverse genetics, recombinant RSV (rRSV) strains were engineered with truncations at amino acid 118, 174, 193, or 213 and respectively designated rA2cpDeltaG118, rA2cpDeltaG174, rA2cpDeltaG193, and rA2cpDeltaG213. All rA2cpDeltaG strains were attenuated for growth in vitro and in the respiratory tracts of BALB/c mice but not restricted for growth at 37 degrees C. The mutations did not significantly affect nascent genome synthesis in human lung epithelial (A549) cells, but infectious rA2cpDeltaG virus shed into the culture medium was dramatically diminished. Hence, the data suggested that a site within the C-terminal 85 amino acids of G protein is important for efficient genome packaging or budding of RSV from the infected cell. Vaccination with the rA2cpDeltaG strains also generated efficacious immune responses in mice that were similar to those elicited by the temperature-sensitive cpts248/404 strain previously tested in human infants. Collectively, the data indicate that the rA2cpDeltaG strains are immunogenic, not likely to revert to the less-attenuated phenotype, and thus candidates for further development as vaccines against RSV.  相似文献   

13.
Metazoan replication-dependent histone mRNAs end in a conserved stem-loop rather than in the poly(A) tail found on all other mRNAs. The 3' end of histone mRNA binds a single class of proteins, the stem-loop binding proteins (SLBP). In Xenopus, there are two SLBPs: xSLBP1, the homologue of the mammalian SLBP, which is required for processing of histone pre-mRNA, and xSLBP2, which is expressed only during oogenesis and is bound to the stored histone mRNA in Xenopus oocytes. The stem-loop is required for efficient translation of histone mRNAs and substitutes for the poly(A) tail, which is required for efficient translation of other eucaryotic mRNAs. When a rabbit reticulocyte lysate is programmed with uncapped luciferase mRNA ending in the histone stem-loop, there is a three- to sixfold increase in translation in the presence of xSLBP1 while xSLBP2 has no effect on translation. Neither SLBP affected the translation of a luciferase mRNA ending in a mutant stem-loop that does not bind SLBP. Capped luciferase mRNAs ending in the stem-loop were injected into Xenopus oocytes after overexpression of either xSLBP1 or xSLBP2. Overexpression of xSLBP1 in the oocytes stimulated translation, while overexpression of xSLBP2 reduced translation of the luciferase mRNA ending in the histone stem-loop. A small region in the N-terminal portion of xSLBP1 is required to stimulate translation both in vivo and in vitro. An MS2-human SLBP1 fusion protein can activate translation of a reporter mRNA ending in an MS2 binding site, indicating that xSLBP1 only needs to be recruited to the 3' end of the mRNA but does not need to be directly bound to the histone stem-loop to activate translation.  相似文献   

14.
Asenjo A  Villanueva N 《FEBS letters》2000,467(2-3):279-284
Purified human respiratory syncytial virus (HRSV) P phosphoprotein from transfected HEp-2 cells is able to oligomerize forming tetramers. The bulk of constitutive P protein phosphorylation (99. 8%) (serine residues 116, 117, 119, 232 and 237) can be removed without affecting protein oligomerization. However, dephosphorylated P protein, produced in bacteria, is unable to oligomerize. This difference can be explained by a transient P protein phosphorylation, detected in HEp-2 cells, that could be essential for P protein oligomerization.  相似文献   

15.
16.
A subclone of Huh-7 cells that could be relatively efficiently transfected and infected with hepatitis E virus was identified. Following transfection, infectious virus was produced but remained predominantly cell associated. Intracellular virus, recovered by lysis of transfected cells, infected na?ve cells. This in vitro-produced virus appeared to be antigenically identical to virus isolated from clinical samples. Lysates from cells transfected with mutant viral genomes unable to synthesize ORF3 protein contained infectious virions that were similar in number, thermostability, and sedimentation characteristics to those in lysates transfected with wild-type viral genomes. Therefore, in contrast to its requirement in vivo, ORF3 protein is not required for infection of Huh-7 cells or production of infectious virus in vitro.  相似文献   

17.
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.  相似文献   

18.
The cellular immune response to respiratory syncytial virus (RSV) is important in both protection and immunopathogenesis. In contrast to HLA class I, HLA class II-restricted RSV-specific T-cell epitopes have not been identified. Here, we describe the generation and characterization of two human RSV-specific CD4(+)-T-cell clones (TCCs) associated with type 0-like cytokine profiles. TCC 1 was specific for the matrix protein and restricted over HLA-DPB1*1601, while TCC 2 was specific for the attachment protein G and restricted over either HLA-DPB1*0401 or -0402. Interestingly, the latter epitope is conserved in both RSV type A and B viruses. Given the high allele frequencies of HLA-DPB1*0401 and -0402 worldwide, this epitope could be widely recognized and boosted by recurrent RSV infections. Indeed, peptide stimulation of peripheral blood mononuclear cells from healthy adults resulted in the detection of specific responses in 8 of 13 donors. Additional G-specific TCCs were generated from three of these cultures, which recognized the identical (n = 2) or almost identical (n = 1) HLA-DP4-restricted epitope as TCC 2. No significant differences were found between the capacities of cell lines obtained from infants with severe (n = 41) or mild (n = 46) RSV lower respiratory tract infections to function as antigen-presenting cells to the G-specific TCCs, suggesting that the severity of RSV disease is not linked to the allelic frequency of HLA-DP4. In conclusion, we have identified an RSV G-specific human T helper cell epitope restricted by the widely expressed HLA class II alleles DPB1*0401 and -0402. Its putative role in protection and/or immunopathogenesis remains to be determined.  相似文献   

19.
Mu JJ  Chen DS  Chen PJ 《Journal of virology》2001,75(19):9087-9095
Hepatitis delta virus (HDV) small delta antigen (S-HDAg) plays a critical role in virus replication. We previously demonstrated that the S-HDAg phosphorylation occurs on both serine and threonine residues. However, their biological significance and the exact phosphorylation sites of S-HDAg are still unknown. In this study, phosphorylated S-HDAg was detected only in the intracellular compartment, not in viral particles. In addition, the number of phosphorylated isoforms of S-HDAg significantly increased with the extent of viral replication in transfection system. Site-directed mutagenesis showed that alanine replacement of serine 177, which is conserved among all the known HDV strains, resulted in reduced phosphorylation of S-HDAg, while the mutation of the other two conserved serine residues (2 and 123) had little effect. The S177A mutant dramatically decreased its capability in assisting HDV RNA replication, with a preferential and profound impairment of the antigenomic RNA replication. Furthermore, the viral RNA editing, a step relying upon antigenomic RNA replication, was also abolished by this mutation. These results suggested that phosphorylation of S-HDAg, with serine 177 as a presumable site, plays a critical role in viral RNA replication, especially in augmenting the replication of antigenomic RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号