首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Dispersal polymorphism and evolutionary branching of dispersal strategies has been found in several metapopulation models. The mechanism behind those findings has been temporal variation caused by cyclic or chaotic local dynamics, or temporally and spatially varying carrying capacities. We present a new mechanism: spatial heterogeneity in the sense of different patch types with sufficient proportions, and temporal variation caused by catastrophes. The model where this occurs is a generalization of the model by Gyllenberg and Metz (2001). Their model is a size-structured metapopulation model with infinitely many identical patches. We present a generalized version of their metapopulation model allowing for different types of patches. In structured population models, defining and computing fitness in polymorphic situations is, in general, difficult. We present an efficient method, which can be applied also to other structured population or metapopulation models. Received: 6 March 2001 / Revised version: 12 February 2002 / Published online: 17 July 2002  相似文献   

2.
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.  相似文献   

3.
We define a fitness concept applicable to structured metapopulations consisting of infinitely many equally coupled patches. In addition, we introduce a more easily calculated quantity Rm that relates to fitness in the same manner as R0 relates to fitness in ordinary population dynamics: the Rm of a mutant is only defined when the resident population dynamics converges to a point equilibrium and Rm is larger (smaller) than 1 if and only if mutant fitness is positive (negative). Rm corresponds to the average number of newborn dispersers resulting from the (on average less than one) local colony founded by a newborn disperser. Efficient algorithms for calculating its numerical value are provided. As an example of the usefulness of these concepts we calculate the evolutionarily stable conditional dispersal strategy for individuals that can account for the local population density in their dispersal decisions. Below a threshold density x, at which staying and leaving are equality profitable, everybody should stay and above x everybody should leave, where profitability is measured as the mean number of dispersers produced through lines of descent consisting of non-dispersers.  相似文献   

4.
 We study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite) number of local populations living in patches of habitable environment. Dispersal between patches is modelled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for catastrophe rates that increase with decreasing local population size. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur. Received: 10 November 2000 / Revised version: 13 February 2002 / Published online: 17 July 2002  相似文献   

5.
We describe a simple model for changes in the distribution and abundance of a metapopulation and use it to explore the conditions leading to different types of rarity. The model suggests that localized populations (those with low patch occupancy but high local abundance) arise from low dispersal, low heterogeneity in extant population size, and frequent local extinctions relative to the potential for recolonization. Scarce populations (with low distribution and abundance) arise when relative local extinction rate is low to moderate and heterogeneity is high or successful dispersal is relatively low. Sparse populations (widespread, but with low local abundance) arise when relative local extinction rate is very low and either spatial heterogeneity or mortality through unsuccessful dispersal is high. In sparse or common species, there may be unstable as well as stable equilibria, implying a threshold distribution and abundance for persistence. The model supports a general correlation between distribution and abundance and suggests that persistence may be threatened by dispersal rates being either too high or too low. The model provides a new perspective on rarity and suggests a simple theoretical foundation for understanding the population-dynamic mechanisms that determine distribution and abundance.  相似文献   

6.
《Ecological Complexity》2008,5(3):238-251
We present a spatial, individual-based predator–prey model in which dispersal is dependent on the local community. We determine species suitability to the biotic conditions of their local environment through a time and space varying fitness measure. Dispersal of individuals to nearby communities occurs whenever their fitness falls below a predefined tolerance threshold. The spatiotemporal dynamics of the model is described in terms of this threshold. We compare this dynamics with the one obtained through density-independent dispersal and find marked differences. In the community-driven scenario, the spatial correlations in the population density do not vary in a linear fashion as we increase the tolerance threshold. Instead we find the system to cross different dynamical regimes as the threshold is raised. Spatial patterns evolve from disordered, to scale-free complex patterns, to finally becoming well-organized domains. This model therefore predicts that natural populations, the dispersal strategies of which are likely to be influenced by their local environment, might be subject to complex spatiotemporal dynamics.  相似文献   

7.
We used spatial autocorrelation of allele frequencies to examine local structure in a population of bannertailed kangaroo rats for which Wright's isolation-by-distance model seems applicable, and for which we can estimate neighborhood size based on 10 years of data on demography and dispersal. The uniform dispersion and strong philopatric tendencies of this species provide a test case for the idea that restricted dispersal can lead to local genetic structure in small mammals. Whether we considered such complications as nonnormal dispersal distances, variation in lifetime reproductive success, fluctuating population density, and adult as well as juvenile dispersal, our estimate of effective population size was fewer than 15 animals. Nevertheless, data from four polymorphic allozyme loci analyzed over a range of separations between 50 m (approximately one home range diameter) and 1,000 m detected no evidence for spatial clustering of alleles. One resolution of this apparent paradox is that “gamete dispersal,” caused by the movements of males away from their residences during the breeding season, may be a significant (and unmeasured) component of gene dispersal. Our analyses also demonstrate that a decline in population density may actually increase neighborhood size. A more general implication is that even extremely philopatric mammals have effective population sizes large enough to prevent the development of local genetic structure.  相似文献   

8.
Habitat destruction is a critical factor that affects persistence in several taxa, including Pacific salmon. Salmon are noted for their ability to home to their natal streams for reproduction. Since straying (i.e., spawners reproducing in nonnatal streams) is typically low in salmon, its effects have not been appreciated. In this article, we develop both a general analytical model and a simple simulation model describing structured metapopulations to study how weak connections between subpopulations affect the ability of a species to tolerate habitat destruction and/or declines in habitat quality. Our goals are to develop general principles and to relate these principles to salmon population dynamics. The analytical model describes the dynamics of two density-dependent subpopulations, connected by dispersal, whose growth rates fluctuate in response to environmental and demographic stochasticity. We find that, for moderate levels of environmental variability, small dispersal rates can significantly increase mean extinction times. This effect declines with increasing habitat quality, increasing temporal correlation, and increasing spatial correlation, but it is still significant for realistic parameter values. The simulation model shows there is a threshold rate of dispersal that minimizes extinction probabilities. These results cannot be seen in classical metapopulation models and provide new insights into the rescue effect.  相似文献   

9.
Spatially structured environments may impact evolution by restricting population sizes, limiting opportunities for genetic mixis, or weakening selection against deleterious genotypes. When habitat structure impedes dispersal, low-productivity (less virulent) infectious parasites may benefit from their prudent exploitation of local hosts. Here we explored the combined ability for habitat structure and host density to dictate the relative reproductive success of differentially productive parasites. To do so, we allowed two RNA bacteriophage Phi6 genotypes to compete in structured and unstructured (semi-solid versus liquid) habitats while manipulating the density of Pseudomonas hosts. In the unstructured habitats, the more-productive phage strain experienced a relatively constant fitness advantage regardless of starting host density. By contrast, in structured habitats, restricted phage dispersal may have magnified the importance of local productivity, thus allowing the relative fitness of the less-productive virus to improve as host density increased. Further data suggested that latent period (duration of cellular infection) and especially burst size (viral progeny produced per cell) were the phage "life-history" traits most responsible for our results. We discuss the relevance of our findings for selection occurring in natural phage populations and for the general evolutionary epidemiology of infectious parasites.  相似文献   

10.
Spatial synchrony of oscillating populations has been observed in many ecological systems, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noises, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we develop a spatially structured population model, which is described by coupled-map lattices and incorporates both dispersal and colored environmental noise. A method for generating time series with desired spatial correlation and color is introduced. Then, we use these generated time series to analyze the influence of noise color on synchrony in population dynamics. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony are considered for stable, periodic and chaotic population dynamics. Numerical simulations verify that environmental noise color has a major influence on the level of synchrony, which depends strongly on how noise is introduced into the model. Furthermore, the influence of noise color also depends on patterns of dispersal between local populations. In addition, the desynchronizing effect of reddened noise is always weaker than that of white noise. From our results, we notice that the role of reddened environmental noise on spatial synchrony should be treated carefully and cautiously, especially for the spatially structured populations linked by dispersal.  相似文献   

11.
苏敏 《生态学报》2011,31(12):3265-3269
景观破碎化和扩散是空间种群模型的重要因素,对生物入侵存在着深远的影响。本章将基于偶对近似模型,探讨由局部和全局宿主-寄生相互作用共同决定的扩散模式对破坏性景观上疾病入侵与传播的影响。其中,生境破坏由生境丧失量与生境破碎化程度来描述。模拟结果显示,宿主和病毒的全局扩散对疾病的入侵与种群密度产生不对称效应:病毒的全局扩散对系统产生的影响较宿主的全局扩散更为显著。不同扩散模式下,生境丧失越高或破碎化程度越低,均将越有害于寄生病毒的入侵;同时,生境的破坏程度也显著地影响了入侵阈值对扩散模式的响应机制。本文研究结果暗示,景观破碎化的空间分布格局以及病毒扩散的限制均可作为物种保护与管理中有效的疾病控制策略。该研究结果在一定意义上丰富和发展了寄生感染理论,为物种保护提供了生态学理论依据。  相似文献   

12.
The evolutionary potential of populations is mainly determined by population size and available genetic variance. However, the adaptability of spatially structured populations may also be affected by dispersal: positively by spreading beneficial mutations across sub-populations, but negatively by moving locally adapted alleles between demes. We develop an individual-based, two-patch, allelic model to investigate the balance between these opposing effects on a population''s evolutionary response to rapid climate change. Individual fitness is controlled by two polygenic traits coding for local adaptation either to the environment or to climate. Under conditions of selection that favour the evolution of a generalist phenotype (i.e. weak divergent selection between patches) dispersal has an overall positive effect on the persistence of the population. However, when selection favours locally adapted specialists, the beneficial effects of dispersal outweigh the associated increase in maladaptation for a narrow range of parameter space only (intermediate selection strength and low linkage among loci), where the spread of beneficial climate alleles is not strongly hampered by selection against non-specialists. Given that local selection across heterogeneous and fragmented landscapes is common, the complex effect of dispersal that we describe will play an important role in determining the evolutionary dynamics of many species under rapidly changing climate.  相似文献   

13.
In this paper, we develop a general method to determine evolutionary equilibrium sex ratios and to check evolutionary stability, continuous stability and invadability in exact genetic models with or without dominance. This method is then applied to three kinds of models for structured populations: the first one concerns Hamilton's LMC model, except that only a fraction beta of female offspring mate with male offspring born in the same colonies, while a fraction 1-beta mate with male offspring chosen at random within the whole population; in the second model, it is assumed that partial dispersal of inseminated females occurs after mating; in the third model, partial dispersal of male and female offspring occurs before mating. In the first model, the effect of population regulation is studied while, in the other models, two kinds of dispersal are considered: proportional and uniform.  相似文献   

14.
The effect of genetic drift in spatially distributed dispersal-linked and density-regulated populations is studied in a classical one-locus two-allele system. We analyse emergence of genetic differentiation assuming random drift only, where the noise-like variability is due to demographic stochasticity. We find emergence of clusters of sub-units with local allele fixation and persistence of both alleles in lengthy simulations. We demonstrate that local allele fixation (extending over a number of adjoining spatial sub-units) – without global loss of alleles – may occur when the carrying capacities of local patches are small, under a full range population dynamic regimes, when dispersal rate is small, and when redistribution (through dispersal) does not act as global mixer. These results are novel. The key to the observations is that drift is simultaneously influenced by distance-dependent dispersal, demographic stochasticity and autocorrelated population fluctuations due to delayed-density dependence. These are standard elements of contemporary population models in spatially structured context. With stable large populations, no stochasticity and dispersal limited to neighbours only, our model collapses to the stepping-stone model, while with dispersal being random and global, the model collapses to Wright's island model.  相似文献   

15.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation or other anthropogenic interventions will lead to spatially correlated extinction patterns. Under such conditions natural selection is thought to lead to more long‐distance dispersal, but this theoretical prediction has not yet been verified empirically. We test this prediction in experimental spatially structured populations of the spider mite Tetranychus urticae and supplement these empirical results with insights from an individual‐based evolutionary model. We demonstrate that the spatial correlation of local extinctions changes the entire distribution of dispersal distances (dispersal kernel) and selects for overall less emigration but more long‐distance dispersal.  相似文献   

16.
We study the evolution of density-dependent dispersal in a structured metapopulation subject to local catastrophes that eradicate local populations. To this end we use the theory of structured metapopulation dynamics and the theory of adaptive dynamics.The set of evolutionarily possible dispersal functions (i.e., emigration rates as a function of the local population density) is derived mechanistically from an underlying resource-consumer model. The local resource dynamics is of a flow-culture type and consumers leave a local population with a constant probability per unit of time κ when searching for resources but not when handling resources (i.e., eating and digesting). The time an individual spends searching (as opposed to handling) depends on the local resource density, which in turn depends on the local consumer density, and so the average per capita emigration rate depends on the local consumer density as well.The derived emigration rates are sigmoid functions of local consumer population density. The parameters of the local resource-consumer dynamics are subject to evolution. In particular, we find that there exists a unique evolutionarily stable and attracting dispersal rate κ for searching consumers. The κ increases with local resource productivity and decreases with resource decay rate. The κ also increases with the survival probability during dispersal, but as a function of the catastrophe rate it reaches a maximum before dropping off to zero again.  相似文献   

17.
Dispersal is a key trait responsible for the spread of individuals and genes among local populations, thereby generating eco‐evolutionary interactions. Especially in heterogeneous metapopulations, a tight coupling between dispersal, population dynamics and the evolution of local adaptation is expected. In this respect, dispersal should counteract ecological specialization by redistributing locally selected phenotypes (i.e. migration load). Habitat choice following an informed dispersal decision, however, can facilitate the evolution of ecological specialization. How such informed decisions influence metapopulation size and variability is yet to be determined. By means of individual‐based modelling, we demonstrate that informed decisions about both departure and settlement decouple the evolution of dispersal and that of generalism, selecting for highly dispersive specialists. Choice at settlement is based on information from the entire dispersal range, and therefore decouples dispersal from ecological specialization more effectively than choice at departure, which is only based on local information. Additionally, habitat choice at departure and settlement reduces local and metapopulation variability because of the maintenance of ecological specialization at all levels of dispersal propensity. Our study illustrates the important role of habitat choice for dynamics of spatially structured populations and thus emphasizes the importance of considering that dispersal is often informed.  相似文献   

18.
Goudet J  Perrin N  Waser P 《Molecular ecology》2002,11(6):1103-1114
Understanding why dispersal is sex-biased in many taxa is still a major concern in evolutionary ecology. Dispersal tends to be male-biased in mammals and female-biased in birds, but counter-examples exist and little is known about sex bias in other taxa. Obtaining accurate measures of dispersal in the field remains a problem. Here we describe and compare several methods for detecting sex-biased dispersal using bi-parentally inherited, codominant genetic markers. If gene flow is restricted among populations, then the genotype of an individual tells something about its origin. Provided that dispersal occurs at the juvenile stage and that sampling is carried out on adults, genotypes sampled from the dispersing sex should on average be less likely (compared to genotypes from the philopatric sex) in the population in which they were sampled. The dispersing sex should be less genetically structured and should present a larger heterozygote deficit. In this study we use computer simulations and a permutation test on four statistics to investigate the conditions under which sex-biased dispersal can be detected. Two tests emerge as fairly powerful. We present results concerning the optimal sampling strategy (varying number of samples, individuals, loci per individual and level of polymorphism) under different amounts of dispersal for each sex. These tests for biases in dispersal are also appropriate for any attribute (e.g. size, colour, status) suspected to influence the probability of dispersal. A windows program carrying out these tests can be freely downloaded from http://www.unil.ch/izea/softwares/fstat.html  相似文献   

19.
Previous models have predicted that when mortality increases with age, older individuals should invest more of their resources in reproduction and produce less dispersive offspring, as both their future reproductive value and their prospect of competing with their own sib decline. Those models assumed stable population sizes. We here study for the first time the evolution of age‐specific reproductive effort and of age‐specific offspring dispersal rate in a metapopulation with extinction‐recolonization dynamics and juvenile dispersal. Our model explores the evolutionary consequences of disequilibrium in the age structure of individuals in local populations, generated by disturbances. Life‐history decisions are then shaped both by changes with age in individual performances, and by changes in ecological conditions, as young and old individuals do not live on average in the same environments. Lower juvenile dispersal favours the evolution of higher reproductive effort in young adults in a metapopulation with extinction‐recolonization compared with a well‐mixed population. Contrary to previous predictions for stable structured populations, we find that offspring dispersal should generally increase with maternal age. This is because young individuals, who are overrepresented in recently colonized populations, should allocate more to reproduction and less to dispersal as a strategy to exploit abundant recruitment opportunities in such populations.  相似文献   

20.
Evidence of spatial genetic structure in a California bunchgrass population   总被引:1,自引:0,他引:1  
We investigated the scale of genetic variation of purple needlegrass (Nassella pulchra), a species commonly used in California for grassland restoration. Common garden and field data revealed evidence of genetic differentiation between two intermixed microhabitats characterized by differences in soil depth and community composition. We assessed the genetic variation within a single population using randomly amplified polymorphic DNA (RAPD) data collected from clusters of five individuals in 40 locations. We found no evidence for genetic structure at the whole population level. At smaller spatial scales, however, we found strong evidence that genetic subdivision of the population occurs at the level of the maternal neighborhood. We suggest that the interaction between widespread pollen dispersal and restricted seed dispersal may be the primary factor generating these results; panmictic pollen dispersal will make detection of genetic patterning difficult at larger spatial scales while limited seed dispersal will generate local genetic structure. As a result, the detection of population genetic structure will depend on the spatial scale of analysis. Local selection gradients related to topography and soil depth are also likely to play a role in structuring local genetic variation. Since N. pulchra is widely used in California in grassland and woodland habitat restoration, we suggest that, as a general rule, care should be exercised in transferring germplasm for the purposes of conservation when little is known about the within-population genetic subdivision of a plant species. Received: 23 December 1996 / Accepted: 20 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号