首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Metabolism of Zeatin and Zeatin Riboside by Soya Bean Callus   总被引:1,自引:0,他引:1  
STADEN  J.VAN; DAVEY  J. E. 《Annals of botany》1977,41(5):1041-1048
Five cell division inducing compounds were found in soya beancallus irrespective of whether it wes grown on a zeatin or zeatinriboside containing basal medium. In both cases the major metaboliteseems to be zeatin glucoside. The significance of this metabolicstep in plant tissue is discussed.  相似文献   

2.
The crystal structure of the potassium salt of N-(purin-6ylcarbamoyl) glycine was determined from three-dimensional X-ray diffraction data. The N6-substituent is distal (trans) to the imidazole ring, forming an intramolecular hydrogen bond N(glycine) -H---N(1)adenine. This conformation of the N6-substituent is typical of ureidopurines, and blocks the two sites N6-H and N1 of adenine that are normally utilized for complementary base-pairing in the double helical regions of nucleic acids; the internal hydrogen bonding further enhances the shielding of N1. This blocking of N6-H and N1 may be important in enhancing the single stranded conformation of the anticodon loop of tRNA and in preventing the modified adenosine adjacent to the anticodon from taking part directly in codon-anticodon interaction through the complementary base pairing.  相似文献   

3.
The relationship between the induction of tracheary elementdifferentiation and exogenous L-methionine was examined in agar-growncultures of soya bean callus initiated from Glycine max L. ‘Wayne’and ‘Clark 63’. Although Wayne is a normal cultivarsoya bean, seedlings of Clark 63 exhibit abnormal growth at25 °C due to exessive ethylene biosynthesis at this temperature.Wayne callus showed increased xylogenesis in the presence ofexogenous L-methionine (3.7 µg 1–1) in comparisonto IAA–KN controls at both 20 and 25 °C. Clark 63callus produced greater numbers of tracheary elements in responseto exogenous L-methionine only at 25 °C. The induction ofxylem differentiation was independent of the maintenance temperatureof the stock cultures of both cultivars. Xylogenesis initiatedbyan IAA–KN medium was inhibited by the addition of AgNO3(20 mg 1–1) to the extent of 76.5 per cent in cv. Wayneand 6 per cent in cv. Clark 63. The inhibitory effect was partiallyreversed by the addition of L-methionine (3.7 µg 1–1)to the IAA–KN–AgNO2 medium. These data support thehypothesis that xylogenesis in vitro involves auxin, cytokininand ethylene. differentiation, xylogenesis, L-methionine, ethylene, Glycine max L., soya bean, callus culture, auxin, kinetin  相似文献   

4.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

5.
6.
An assay has been developed for quantitation of the modified nucleoside, t6A, in tRNA at the pmole level. For tRNA from a variety of species, the content of t6A was found to be 0.18–0.25 mole %. These values lend support to the suggestion that t6A is located at the 3′-end of the anticodon in tRNA's whose codons begin with adenosine. Essentially no t6A was found in Mycoplasma sp. (Kid) tRNA which is deficient in many modified nucleosides. In the rat, no organ specific differences were found. The amount of t6A in Novikoff hepatoma tRNA was essentially the same as in tRNA from normal rat liver.  相似文献   

7.
The cytokinin, N6-(Δ2-isopentenyl)adenine, is found to be at least 3.3 times as active as N6-(Δ2-isopentenyl)adenosine in promoting the growth of cytokinin-requiring tobacco (Nicotiana tabacum) callus. Absorption rates of N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine by tobacco cells in liquid suspension do not differ significantly. In these cells, N6-(Δ2-isopentenyl)adenosine-5′-monophosphate, di-, and triphosphate are synthesized in both cases, but 7-glucosylation occurs significantly only with N6-(Δ2-isopentenyl)adenine, protecting thereby its N6-isopentenyl side chain from cleavage. Degradation by N6-side chain removal appears to be intense, leading to the formation of adenine, adenosine, and adenylic nucleotides. Thus, it is suggested that N6-(Δ2-isopentenyl)adenine-7-glucoside is a protected or storage form of the cytokinin which could account for the higher biological activity of N6-(Δ2-isopentenyl)adenine than of N6-(Δ2-isopentenyl)adenosine.  相似文献   

8.
Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a-5c) and 2,6-diaminopurines (5d-5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8-10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

9.
N-(6-Substituted-1,3-benzothiazol-2-yl)benzenesulfonamide derivatives 1–8 were synthesized and evaluated for their in vivo antidiabetic activity in a non-insulin-dependent diabetes mellitus rat model. Several compounds synthesized showed significant lowering of plasma glucose level in this model. As a possible mode of action, the compounds were in vitro evaluated as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors. The most active compounds (3 and 4) were docked into the crystal structure of 11β-HSD1. Docking results indicate potential hydrogen bond interactions with catalytic amino acid residues.  相似文献   

10.
11.
The effects of N-(phosphonomethyl)glycine (glyphosate) on the regulation of carbon assimilation, metabolism, and translocation were studied in leaves of sugar beet (Beta vulgaris L., Klein E-type multigerm) under a light regimen that began with gradually increasing irradiance as generally occurs on a natural day. Soon after application, glyphosate caused a marked increase in ribulose bisphosphate and a decrease in phosphoglyceric acid. The response is most simply explained by direct inhibition of ribulose bisphosphate carboxylase activity. The extent of inhibition was small, and the carbon assimilation rate did not decrease. As predicted, photosynthesis declined within an hour after glyphosate was applied to leaves under gradually increasing light. Inhibition resulted from a decrease in ribulose bisphosphate due to depletion of carbon from the photosynthetic carbon reduction cycle. Photoinhibition, a light-dependent limitation of photosynthetic capacity, appeared to be necessary for marked glyphosate-induced inhibition of photosynthesis. As a result, photosynthesis rate increased with irradiance until it exceeded 400 micromoles per square meter per second but then declined as the light level increased beyond 500 micromoles per square meter per second. Glyphosate changed the allocation of newly fixed carbon between starch and sucrose for export. Changes in the levels of ribulose bisphosphate and phosphoglyceric acid produced important effects on the regulation of carbon assimilation and metabolism.  相似文献   

12.
Fluorescent N-/purin-6-yl/pyridinium salts are formed in pyridine assisted phosphorylations and arenesulphonations of the hypoxanthine lactam system under various conditions including those used in oligonucleotide synthesis. The N1-methyl-N3-/purin-6-yl/imidazolium salt is generated in phosphorylation with TPSCl/1-methylimidazole as a coupling system. Both salts are representatives of a new family of ionic side-products in oligonucleotide synthesis involving hypoxanthine residues. Their isolation procedure has been developed. High reactivity of N-/purin-6-yl/pyridinium salts towards some reagents used in oligonucleotide chemistry, e.g. pyridinium mediated conversion of hypoxanthine into 6-aminopurine, can result in point mutations in synthesized oligomer.  相似文献   

13.
The SAR studies to optimise both potency and rate of clearance in the rat for a series of pyrimidine and pyridine based VLA-4 antagonists are described.  相似文献   

14.
15.
16.
Zhao G  Qu J  Davis FA  Jorns MS 《Biochemistry》2000,39(46):14341-14347
Monomeric sarcosine oxidase (MSOX) catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound flavin adenine dinucleotide (FAD). The present study demonstrates that N-(cyclopropyl)glycine (CPG) is a mechanism-based inhibitor. CPG forms a charge transfer complex with MSOX that reacts under aerobic conditions to yield a covalently modified, reduced flavin (lambda(max) = 422 nm, epsilon(422) = 3.9 mM(-1) cm(-1)), accompanied by a loss of enzyme activity. The CPG-modified flavin is converted at an 8-fold slower rate to 1,5-dihydro-FAD (EFADH(2)), which reacts rapidly with oxygen to regenerate unmodified, oxidized enzyme. As a result, CPG-modified MSOX reaches a CPG-dependent steady-state concentration under aerobic conditions and reverts back to unmodified enzyme upon removal of excess reagent. No loss of activity is observed under anaerobic conditions where EFADH(2) is formed in a reaction that goes to completion at low CPG concentrations. Aerobic denaturation of CPG-modified enzyme yields unmodified, oxidized flavin at a rate similar to the anaerobic denaturation reaction, which yields 1,5-dihydro-FAD. The CPG-modified flavin can be reduced with borohydride, a reaction that blocks conversion to unmodified flavin upon removal of excess CPG or enzyme denaturation. The possible chemical mechanism of inactivation and structure of the CPG-modified flavin are discussed.  相似文献   

17.
18.
19.
VAN STADEN  J. 《Annals of botany》1979,44(6):671-675
The combined application of 10–6 M adenine and 10–6M mevalonic acid to soya bean callus accelerated its growth.Two biologically active compounds that co-chromatographed withzeatin and isopentenyl adenine were extracted from this callus.Studies with labelled adenine and mevalonic acid indicated thatthe cytokinin-dependent soya bean callus incorporated only avery small amount of the radioactive precursors into the biologically-activecompounds, making it extremely difficult to determine whetherthese compounds were synthesized de novo or whether they aroseas by-products of tRNA turnover. As cytokinins do not accumulatein rapidly-growing cytokinin-dependent soya bean callus culturedon kinetin as a source of cytokinin it seems as if biosynthesisde novo occurs when the callus is supplied with adenine andmevalonic acid. Glycine max (L.) Merrill, soya bean, callus culture, adenine, mevalonic acid, endogenous cytokinins  相似文献   

20.
N-(n-butyl)thiophosphorictriamide (NBPT) and its oxygen analogue N-(n-butyl)phosphorictriamide (NBPTO) were studied as inhibitors of jack bean urease. NBPTO was obtained by spontaneous conversion of NBPT into NBPTO. The conversion under laboratory conditions was slow and did not affect NBPT studies. The mechanisms of NBPT and NBPTO inhibition were determined by analysis of the reaction progress curves in the presence of different inhibitor concentrations. The obtained plots were time-dependent and characteristic of slow-binding inhibition. The effects of different concentration of NBPT and NBPTO on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships for a one-step enzyme-inhibitor interaction, qualified as mechanism A. The inhibition constants of urease by NBPT and NBPTO were found to be 0.15 μM and 2.1 nM, respectively. The inhibition constant for NBPT was also calculated by steady-state analysis and was found to be 0.13 μM. NBPTO was found to be a very strong inhibitor of urease in contrast to NBPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号