首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human platelet membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa), which have been proposed to be subunits of a receptor for fibrinogen, were purified from Triton X-100-solubilized platelet membranes by affinity chromatography on a concanavalin A (Con A)-Sepharose column followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compositional analyses of the purified glycoproteins showed that GPIIb and GPIIIa contain 15% and 18% carbohydrate by weight, respectively, which consists of galactose, mannose, glucosamine, fucose, and sialic acid. This suggested that these glycoproteins contained N-linked carbohydrate chains. The carbohydrate chains were released from each glycoprotein by hydrazinolysis and then fractionated by ion-exchange chromatography on a Mono Q column. From each glycoprotein, mono-, di-, and trisialylated and neutral oligosaccharide fractions were obtained. The structures of these oligosaccharides were investigated by means of compositional and methylation analyses and digestion by exoglycosidase, and their reactivities to immobilized lectins were also examined. The neutral oligosaccharides, which comprised about 14% of the total oligosaccharides released from GPIIb and about 52% of that from GPIIIa, were found to be of the high mannose-type, in that they contained 5 or 6 mannose residues. On the other hand, a major part of the acidic oligosaccharides was found to consist of typical bi- and triantennary complex-type sugar chains, and much smaller amounts of tetraantennary complex-type sugar chains, and complex-type sugar chains with a fucosyl residue at a N-acetylglucosamine residue in the peripheral portion or a bisecting N-acetylglucosamine at a beta-mannosyl residue in the core portion were also detected. In conclusion, we found that GPIIb contained mainly complex-type sugar chains, whereas high mannose-type sugar chains were the predominant carbohydrate units in GPIIIa, and that the detected differences in the carbohydrate moieties of GPIIb and GPIIIa were quantitative but not qualitative.  相似文献   

2.
The N-linked oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 derived from chronically infected lymphoblastoid (H9) cells have been investigated by enzymatic microsequencing after release from protein by hydrazinolysis, labeling with NaB3H4, and chromatography on adsorbent columns of Phaseolus vulgaris erythrophytohemagglutinin and Ricinus communis agglutinin (Mr 120,000) and on Bio-Gel P-4. A substantially greater diversity of oligosaccharide structures was detected than among those released by hydrazinolysis from recombinant gp120 produced in Chinese hamster ovary cells and investigated by similar procedures (Mizuochi, T., Spellman, M.W., Larkin, M., Solomon, J., Basa, L.J., and Feizi, T. (1988) Biochem J. 254, 599-603) and among those released by endoglycosidases from virus-derived gp120 isolated from infected H9 cells after metabolic labeling with D-[2-3H]mannose or D-[6-3H]glucosamine (Geyer, H., Holschbach, L., Hunsmann, G., and Schneider, J. (1988) J. Biol. Chem. 263, 11760-11767). In this study, 16% of the oligosaccharides were identified as complex-type bi-, tri-, and tetraantennary sialo-oligosaccharides with bisecting N-acetylglucosamine residues. Such structures were lacking on recombinant gp120 and could not be detected on the metabolically labeled, virus-derived glycoprotein. As in the earlier investigations, complex-type chains lacking bisecting N-acetylglucosamine residues, hybrid-type chains, and a series of high mannose-type structures with 5-9 mannose residues were identified. In addition, an array of complex-type chains having one or more outer chains with beta-galactosyl residues were detected in this study, but with additional substitutions that require further investigation. The number of potential N-glycosylation sites on gp120 is on the order of 20, but the oligosaccharide structures are far more numerous. Thus, the salient conclusion from this and earlier investigations is that alternative structures occur on at least some of the glycosylation sites and that numerous glycosylation variants of this glycoprotein are produced even within a single cell line. Since the glycosylation is the product of host cell glycosyltransferases, an even greater number of glycosylation variants of gp120 are predicted to arise from the heterogeneous cell populations harboring the virus in in vivo infection.  相似文献   

3.
The structures of oligosaccharides of normal and pathological immunoglobulin G (IgG) are reported. Asparagine-linked neutral oligosaccharides were released by N-oligosaccharide glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by reverse-phase high-performance liquid chromatography. It was possible to separate 15 out of the 16 kinds of oligosaccharides that have been suggested to exist in normal human IgG. High-resolution proton nuclear magnetic resonance spectroscopy was used along with chemical methods to determine the structures of the separated oligosaccharides. It has been shown that in normal IgG a biantennary complex-type oligosaccharide with a fucose residue (formula; see text) is predominant and four kinds of oligosaccharides, which are biantennary with bisecting N-acetylglucosamine and without fucose residues, exist only in a very small quantity. The results obtained for normal IgG were compared with those obtained for three myeloma IgG proteins. It has been found that the most abundant species that exist in the pathological proteins analyzed in the present work lack one or two galactose residues at the nonreducing terminal. We show that the fractions of fucose-containing oligosaccharides are markedly decreased in the heavy-chain disease protein Per. It is of particular interest that in this paraprotein the major component is a biantennary complex-type oligosaccharide that lacks a fucose residue and an oligosaccharide with the structure (Formula: see text) exists as one of the most abundant components.  相似文献   

4.
The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.  相似文献   

5.
The asparagine-linked sugar chains of fibronectin purified from human placenta were quantitatively released as oligosaccharides by hydrazinolysis. After N-acetylation, they were converted to radioactive oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharides were fractionated by their charge on an anion-exchange column chromatography. All of the acidic oligosaccharides could be converted to neutral oligosaccharides by sialidase digestion. These oligosaccharides were then fractionated by serial affinity chromatography using immobilized lectin columns. Study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed the following information as to the structures of the sugar chains of human placental fibronectin: 1) nine sugar chains are included in one molecule; 2) all sialic acid residues are exclusively linked at the C-3 position of the galactose residues; 3) bi-, tri-, and tetraantennary complex-type oligosaccharides with the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)-GlcNac as their cores were found; 4) the bisecting N-acetylglucosamine residue and the Gal beta 1----4GlcNAc beta 1----repeating groups are included in some of the sugar chains.  相似文献   

6.
The asparagine-linked sugar chains of recombinant human interleukin 5 produced by Chinese hamster ovary cells were released quantitatively as oligosaccharides by hydrazinolysis. After N-acetylation followed by NaB3H4 reduction, each oligosaccharide was isolated by paper electrophoresis and serial lectin column chromatography. Study of their structures by sequential exoglycosidase digestion in combination with methylation analysis, revealed that they are bi-, tri-, and tetraantennary complex-type with fucosylated and non-fucosylated trimannosyl cores and high mannose type sugar chains. More than 80% of the sugar chains occur as biantennary complex-type sugar chains. Although acidic oligosaccharides amount to only 14% of the total oligosaccharides, their sialic acid residues occur exclusively as the Sia alpha 2----3Gal group. Removal of the sugar moiety from intact recombinant human interleukin 5 produced a 2.5-fold increase of its activity to induce IgM secretion.  相似文献   

7.
Over 99% of thyroxine (T4), the major form of thyroid hormone in plasma, is bound to the plasma glycoprotein thyroxine-binding globulin (TBG). The carbohydrate composition of TBG (14.6% by weight) consists of mannose, galactose, N-acetylglucosamine, and N-acetylneuraminic acid in the molar ratios of 11:9:16:10 per mol of glycoprotein. No fucose or N-acetylgalactosamine were detected. Amino acid analyses were performed. Glycopeptides, prepared by exhaustive pronase treatment of the glycoprotein, were separated by gel filtration and ion exchange chromatography. All glycopeptides contained the four sugars present in the native glycoprotein. One-fourth of the glycopeptide fraction was resolved into a discrete component, glycopeptide I. The remaining glycopeptides were a mixture termed glycopeptides II and III. Glycopeptides II and III were resolved into two discrete carbohydrate units, termed oligosaccharides A and B, by alkaline-borohydride treatment and DEAE-cellulose chromatography. We propose that TBG contains four oligosaccharide chains as calculated from the molecular weights of the glycopeptides and from compositional data assuming 1 asparagine residue/glycopeptide. The carbohydrate structures of the glycopeptides and relative affinities of TBG, glycopeptides and oligosaccharides for hepatocyte plasma membrane binding are presented in the accompanying paper (Zinn, A.B., Marshall, J.S., and Carlson, D.M. (1978) J. Biol. Chem. 253, 6768-6773.  相似文献   

8.
Our previous study showed that non-reducing terminal galactose residues of N-linked sugar chains present in sheep erythrocyte membrane glycoproteins are important for rosette formation with T lymphoblastic cells [Ogasawara et al. (1995) Immunol Lett 48: 35–38]. As a first step to elucidate the significant structures of sugar chains involved in rosette formation, we analysed N-linked sugar chains released from the membrane glycoproteins by hydrazinolysis. The oligosaccharides were labeled with NaB3H4 and fractionated using columns of Aleuria aurantia lectin-Sepharose, MonoQ and Bio-Gel P-4. Structural analyses of oligosaccharides by sequential exoglycosidase digestion in combination with methylation analysis revealed that the membrane glycoproteins contain bi- (19%), tri- (33%), and tetraantennary (44%) complex-type oligosaccharides and that the oligosaccharides having exposed galactose residues amount to 40% of the total.  相似文献   

9.
We have purified recombinant murine interleukin 5 (rmIL-5) from the supernatant of Chinese hamster ovary cells. Each peptide fragment of the purified rmIL-5 generated by Achromobacter protease I digestion was characterized and glycosylation sites were determined. Although rmIL-5 contains three potential sites of N-linked glycosylation (Asn-26, Asn-55 and Asn-69), Asn-69 is not glycosylated. The oligosaccharides released from the protein by hydrazinolysis were fractionated by paper electrophoresis, lectin column chromatography and gel permeation chromatography, and their structures were analysed by sequential exoglycosidase digestion in combination with methylation analysis. The results indicated that they are a mixture of bi-, tri- and tetraantennary complex-type sugar chains with and without a fucose at the C-6 position of the proximal N-acetylglucosamine residue and high-mannose-type sugar chains. Although > 80% of the sugar chains are neutral oligosaccharides similar to recombinant human IL-5 (rhIL-5; Kodama, S., Endo, T., Tsuroka, N., Tsujimoto, M. and Kobata, A. (1991) J. Biochem., 110, 693-701), rmIL-5 has more tetraantennary oligosaccharides than rhIL-5. A site differential study revealed that Asn-55 has more tetraantennary oligosaccharides than Asn-26.  相似文献   

10.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

11.
Structures of the asparagine-linked sugar chains of laminin   总被引:13,自引:0,他引:13  
This investigation describes the isolation and characterization of oligosaccharides of the basement membrane glycoprotein, laminin. Pronase-released glycopeptides of isolated laminin, from a mouse Engelbreth-Holm-Swarm tumor, were fractionated using a combination of gel permeation chromatography and Con A-Sepharose affinity chromatography. The glycopeptides were analyzed for sugar linkage patterns by methylation analysis. Glycopeptides and hydrazine-released oligosaccharides were further analyzed using endo-beta-galactosidase, endo-beta-N-acetylglucosaminidase H and specific exoglycosidases in conjunction with calibrated gel permeation chromatography. Based on these experiments, murine tumor laminin was shown to contain asparagine-linked oligosaccharides with the following structures: bi-, tri- and tetraantennary complex-type oligosaccharides; polylactosaminyl side chains containing Gal(beta 1----4)GlcNAc(beta 1----3) repeating units attached to the trimannose core portion of the bi-, tri- and tetraantennary complex-type oligosaccharides; unusual complex-type oligosaccharides terminated at the nonreducing end with sialic acid, alpha-galactose, beta-galactose and beta-N-acetylglucosamine; alpha-galactosyl residues linked to N-acetyllactosamine sequences; high-mannose-type oligosaccharides. These results, in conjunction with analytical data, indicate that most of the carbohydrate of this laminin is N-linked to asparagine and that there are about 43 such N-linked oligosaccharides per laminin molecule.  相似文献   

12.
The oligosaccharide structures linked to Asn289 of a recombinant (r) variant (R561S) human plasminogen (HPg) expressed in Chinese hamster ovary (CHO) cells, after transfection of these cells with a plasmid containing the cDNA coding for the variant HPg, have been determined. Employing high-performance anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the protein by glycopeptidase F, compared with elution positions of standard oligosaccharides, coupled with monosaccharide compositional determinations and analyses of sequential exoglycosidase digestions and specific lectin binding, we find that considerable microheterogeneity in oligosaccharide structure exists at this sole potential N-linked glycosylation site on HPg. A variety of high-mannose structures, as well as bi-, tri-, and tetraantennary complex-type carbohydrate, has been found, in relative amounts of 1-25% of the total oligosaccharides. The complex-type structures contain variable amounts of sialic acid (Sia), ranging from 0 to 5 mol/mol of oligosaccharide in the different glycan structures. Neither hybrid-type molecules, N-acetylglucosamine bisecting oligosaccharides, nor N-acetyllactosaminyl-repeat structures were found to be present in the complex-type carbohydrate pool in observable amounts. Of interest, a significant portion of the Sia exists an outer arm structures in an (alpha 2,6) linkage to the penultimate galactose, a novel finding in CHO cell-directed glycosylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The asparagine-linked sugar chains of human follicle-stimulating hormone (hFSH) were liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Ninety-five percent of the oligosaccharides were acidic and all were converted to a mixture of neutral oligosaccharides on sialidase treatment. The mixture of neutral oligosaccharides was subjected to sequential immobilized lectin column chromatography on E-PHA-agarose, AAL-Sepharose, and Con A-Sepharose, and six fractions were obtained. The results of sequential exoglycosidase digestion of each oligosaccharide and methylation analysis led us to propose that the asparagine-linked sugar chains of hFSH are a mixture of complex-type bi-, tri-, and tetraantennary sialylated sugar chains with and without a fucose residue linked at the C-6 position of the proximal N-acetylglucosamine. Some of these sugar chains contain bisecting N-acetylglucosamine residue.  相似文献   

14.
We have studied rapid and simple sugar mapping using liquid chromatography/electrospray ionization mass spectrometry (LC/MS) equipped with a graphitized carbon column. The oligosaccharide mixture was separated on the basis of the sequence, branching structure, and linkage, and each oligosaccharide was characterized based on its molecular mass. In this study we demonstrated the usefulness of capillary LC/MS (CapLC/MS) and capillary liquid chromatography/tandem mass spectrometry (CapLC/MS/MS) as sensitive means for accomplishing the structural analysis of oligosaccharides in a low-abundance glycoprotein. The carbohydrate heterogeneity and molecular mass information of each oligosaccharide can be readily obtained from CapLC/MS of a small amount of glycoprotein. CapLC/MS/MS provided b-ion series, which is informative with regard to monosaccharide sequence. Exoglycosidase digestion followed by CapLC/MS elucidated a carbohydrate residue linkage. Using this method, we characterized N-linked oligosaccharides in hepatocyte growth factor produced in mouse myeloma NS0 cells as the complex-type bi-, tri-, and tetraantennary terminated with N-glycolylneuraminic acids and alpha-linked galactose residues. Sugar mapping with CapLC/MS and CapLC/MS/MS is useful for monitoring glycosylation patterns and for structural analysis of carbohydrates in a low-abundance glycoprotein and thus will become a powerful tool in biological, pharmaceutical, and clinical studies.  相似文献   

15.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

16.
We analyzed the asparagine-linked oligosaccharide chains of rat haptoglobin which were synthesized and secreted by hepatocytes in primary culture. When the cells were incubated with either [3H]mannose, [3H]galactose, or [3H]fucose, all the radioactive precursors were incorporated into the beta subunit of haptoglobin. [3H]Mannose-labeled haptoglobin was purified from the culture medium by immunoaffinity chromatography, and [3H]oligosaccharides were prepared by strong alkali-borohydride treatment. The oligosaccharides obtained were analyzed by anion-exchange high-performance liquid chromatography, concanavalin-A--Sepharose chromatography and Bio-Gel P-4 chromatography before and after sequential exoglycosidase digestions. The oligosaccharides labeled with [3H]fucose or [3H]galactose were also characterized by the above methods. The results indicate that rat haptoglobin contains two complex-type oligosaccharide chains in each beta subunit; one with a possible structure of ( +/- NeuAc----Gal beta----GlcNAc beta----)3(Man alpha----)2 Man beta----GlcNAc----( +/- Fuc alpha----)GlcNAc and the other with ( +/- NeuAc----Gal beta----GlcNAc beta----Man alpha----)2 Man beta----GlcNAc----( +/- Fuc alpha----)GlcNAc.  相似文献   

17.
Human T-cells (H9), persistently infected with the HTLV-III strain of human immunodeficiency virus, were metabolically labeled with D-[2-3H]mannose or D-[6-3H]glucosamine. The viral envelope glycoprotein, gp120, was isolated either from cell lysates or from cell-free culture supernatant. After proteolytic digestion, the radiolabeled oligosaccharides were sequentially liberated from glycopeptides by treatment with endo-beta-N-acetylhexosaminidase H and peptide:N-glycosidase F. Oligosaccharides released were separated from residual (glyco)peptides and fractionated according to size, charge, and fucose content. The individual oligosaccharide species obtained were characterized by digestion with exoglycosidases and by chromatographic comparison with standard oligosaccharides. Our results demonstrate that the intracellular gp120 carries predominantly oligomannosidic glycans comprising nine or eight mannose residues. The secreted glycoprotein is equally substituted by oligomannosidic species, containing seven to nine mannose residues, and by fucosylated, partially sialylated bi- and triantennary complex-type oligosaccharides.  相似文献   

18.
Band-3 glycoprotein was purified from human blood-group-A erythrocyte membranes by selective solubilization and gel chromatography on Sepharose 6B in the presence of sodium dodecyl sulphate. The purified glycoprotein was subjected to hydrazinolysis in order to release the carbohydrate moiety. The released oligosaccharides were N-acetylated and applied to a column of DEAE-cellulose. Most of the band-3 oligosaccharides obtained were found to be free of sialic acids. When this neutral fraction was subjected to gel chromatography on a column of Sephadex G-50, two broad peaks were observed indicating that the band-3 glycoprotein was heterogeneous in the size of the oligosaccharide moieties. All fractions from gel chromatography were found to contain galactose, mannose, N-acetylglucosamine and fucose. The higher-molecular-weight (mol.wt. 3000-8000) peak consisted of fucose, mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine in a molar proportion of 1.6:3.0:8.4:10.5:0.2. Most of these oligosaccharides were digested with a mixture of beta-galactosidase and beta-N-acetylhexosaminidase after alpha-L-fucosidase treatment to give a small oligosaccharide with the structure alpha Man2-beta Man-beta GlcNAc-GlcNAc. Methylation studies and limited degradation by nitrous acid deamination showed that the oligosaccharides contained the repeating disaccharide Gal beta 1----4GlcNAc beta 1----3, with branching points at C-6 of some of the galactose residues. These results indicate that a major portion of the band-3 oligosaccharide has a common core structure, with heterogeneity in the numbers of the repeating disaccharides, and contains fucose residues both in the peripheral portion and in the core portion. Haemagglutination tests were also carried out to determine the blood-group specificities of the glycoprotein and the results demonstrated the presence of both blood-group-H and I antigenic activities.  相似文献   

19.
The microheterogeneity seen when rat androgen-binding protein (rABP) is analyzed by two-dimensional polyacrylamide gel electrophoresis is attributable, at least in part, to the differential glycosylation of a single promoter. Further insight into the chemical nature of the oligosaccharide units on rABP was obtained by serial lectin chromatography. When rABP was chromatographed on immobilized Concanavalin A (Con-A), it was fractionated into three classes: (1) one that did not bind to the lectin (about 44% of the rABP), (2) one that was bound and could be eluted with 10 mM 1-O-methyl alpha-D-glucopyranoside (glucoside), about 34%, and (3) one that could be eluted with 0.5 M methyl alpha-D-mannopyranoside (mannoside), about 23%. Binding to Con-A indicates the presence of asparagine-linked oligosaccharides. Chromatography of the glucoside-eluted peak on lentil lectin (LcH) indicated that the rABP in that fraction contained a fucose residue on the chitobiose core. Chromatography of the mannoside-eluted peak on wheat germ agglutinin (WGA) indicated the presence of rABP with high mannose- (44%) and hybrid-type (56%) glycans attached. Chromatography on Ricinus communis I (RCA-I) lectin indicated a species containing galactosylated complex-type oligosaccharide chains. Treatment of rABP forms with exoglycosidases confirmed the presence of externally disposed fucose, sialic acid, mannose, and galactose residues. LcH chromatography indicated that about 30% of the rABP that did not bind to Con-A possessed triantennary oligosaccharides with fucose on the chitobiose core. About 28% of the rABP was retarded when it was chromatographed on Phaseolus vulgaris E lectin, suggesting the presence of bisected biantennary chains with terminal galactose residues. We were unable to detect rABP species with serine- or threonine-linked oligosaccharide chains in this fraction. Other forms of rABP in the nonretained fraction of Con-A were not resolved. Western blotting did not reveal major differences in relative molecular weight (Mr) among the rABP species; some differences in the ratio of the heavy to the light subunit of the molecule were detectable.  相似文献   

20.
gamma-Glutamyltranspeptidase purified from human kidneys contains 4-5 asparagine-linked sugar chains in each molecule. The sugar chains were released from the polypeptide portion of the enzyme by hydrazinolysis as oligosaccharides and separated by paper electrophoresis into one neutral and two acidic fractions. By sequential exoglycosidase digestion and methylation analysis, the neutral fraction, which comprised 69% of total oligosaccharides, was shown to be a mixture of bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups in their outer chain moieties. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of bisected triantennary complex-type oligosaccharides with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc group in their outer chain moieties. Some of the outer chains of the acidic oligosaccharides were considered to be sialylated X-antigenic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号