首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart rate and ventral aortic blood pressures were recorded from the Antarctic dragonfish,Gymnodraco acuticeps, a member of the family Bathydraconidae. At −1.0 °C, the resting heart rate was 17.4 beats per minute and the ventral aortic pressure was 3.4 kPa. Cholinergic and adrenergic tone on the heart was determined by administration of the muscarine and ß-adrenoreceptor antagonists, atropine and sotalol, respectively. Neither antagonist influenced ventral aorta blood pressure; however, injection of atropine resulted in a significant increase in heart rate, and sotalol a decrease in heart rate. The cholinergic tone accounted for 30% of intrinsic heart rate and the adrenergic tone 26% of intrinsic heart rate. Comparison of these cardiac data with those for other teleosts from a wide range of thermal environments revealed no significant correlation for either cholinergic or adrenergic tone with body temperature (i.e. thermal independence); however, the resting and intrinsic heart rate of teleosts were strongly correlated with temperature.  相似文献   

2.
The Antarctic notothenioids are among the most stenothermal of fishes, well adapted to their stable, cold and icy environment. The current study set out to investigate the thermal sensitivity/insensitivity of heart rate and ventral aortic blood pressure of the Antarctic nototheniid fish Pagothenia borchgrevinki over a range of temperatures. The heart rate increased rapidly from –1 to 6°C (Q10=2.0–3.3), but was relatively insensitive to temperature above the ~6°C lethal limit of the species (Q10=1.2). The increase in heart rate from –1 to 6°C was the result of a 45% increase in excitatory adrenergic tone, masking a 37% increase in inhibitory cholinergic tone. Ventral aortic pressure was regulated well above the lethal limit, up to at least 10°C. With the return of the fish to environmental temperatures, the heart rate rapidly decreased back to control levels, while ventral aortic pressure increased and remained elevated for over an hour following a 6°C exposure.  相似文献   

3.
Bullfrogs, Lithobathes catesbeianus, bearing a femoral artery cannula were held at 3 temperatures (10, 20 and 30 °C) for 24 h. Changes in heart rate were recorded before and after injection of cholinergic and adrenergic antagonists. Normal heart rate doubled for each temperature increment. Adrenergic tone on the heart varied around 20% at all 3 temperatures but cholinergic tone increased from −5% to 10% between 10 and 30 °C. In contrast, cholinergic tone increased from 75% at 5 °C to 329% at 25 °C in Xenopus laevis. Injection of the neural tracer True Blue into the cervical vagus of the bullfrog revealed a single location for vagal preganglionic neurons (VPN) in the dorsal vagal motor nucleus (DVN), while Xenopus had 30% of its VPN in a ventro-lateral group outside the DVN. Broader comparative studies have suggested that differences in the extent of vagal tone may relate to the location of VPN in the brainstem and this may be the case in these amphibians.  相似文献   

4.
The development times and survival of immature stages in rockwool and the fecundity and longevity of adult Scatella stagnalis were determined and stage-specific life-tables constructed for the species at constant 20 and 25 °C and at a fluctuating temperature (23–34 °C, mean 28.5 °C). Development time from egg to adult decreased with temperature, being 15.9±0.1 days at 20 °C, 11.4±0.1 days at 25 °C and 10.1±0.2 days at fluctuating temperature with mean of 28.5 °C. The lower threshold for egg-to-adult development was 6.4±2.7 °C and the total quantity of thermal energy required to complete development was 212.8±.0 °C. The proportion of females in two populations studied was 0.521. High temperature increased the mortality of pupae from 7% (20 °C) and 10% (25 °C) to 29% at 28.5 °C. At 25 °C, female longevity was 15.5±0.7 days and fecundity 315±19 eggs/female (20.4 eggs/female/day). Males lived for 22.0±1.1 days. At constant 25 °C, the net reproductive rate was 126.1 female eggs/female, generation time was 18.4 days, the doubling time of the population 5.3 days, and the intrinsic rate of increase (r m) 0.263 day–1.  相似文献   

5.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

6.
High yields of viable protoplasts were produced from Porphyra okhaensis H. Joshi, Oza & Tewari following two-step enzymatic digestion (protease pretreatment and cell wall polysaccharides-degrading enzyme treatment) of the thallus. Pretreatment of the tissues with 1% Protease P6 at 20± 1 °C for 30 min prior to digestion with cell wall polysaccharide-degrading enzymes increased the protoplast yield two fold compared to tissues that were digested with polysaccharide-degrading enzyme mixture. The polysaccharide-degrading enzymes employed for protoplast isolation from P. okhaensis were Cellulase Onozuka R-10, Macerozyme R-10, abalone acetone powder and agarase. Suitable pH, temperature and duration of enzyme treatment for optimal production of viable protoplasts were pH 6, 20± 1 °C and 3 h, respectively. Mannitol (0.8 M) was found to be an excellent osmotic stabilizer. When the tissue of P. okhaensis pretreated with 1% protease solution was digested with commercial enzyme mixture consisting of 2% Cellulase Onozuka R-10, 2% Macerozyme R-10, 1% abalone acetone powder, 50 units of agarase and 0.8 M mannitol in 1% NaCl (adjusted to pH 6.0 with 25 mM MES buffer) with gentle agitation for 3 h at 20± 1 °C, 23.2± 0.24× 106 protoplasts g−1 fresh wt. were obtained. The regeneration rate of protoplasts isolated in the present study was found to be 79%. Protoplasts that regenerated cell walls underwent regular cell divisions and developed into leafy gametophytic thallus in the laboratory cultures. Further, the seeding of nylon threads with partially developed protoplasts of P. okhaensis was successful in the laboratory conditions and germlings as long as 3–4 cm were obtained from such seeded threads in one month period in aerated cultures.  相似文献   

7.
Ara  Koichi 《Hydrobiologia》2001,445(1-3):205-215
Seasonal variation in daily egg production rate of the planktonic calanoid copepod Acartia lilljeborgi Giesbrecht in relation to temperature, salinity and chlorophyll a concentration was studied in the Cananéia Lagoon estuarine system, from March 1995 to January 1996. Recently captured A. lilljeborgi adult females were individually incubated in bottles filled with surface water screened through a 40-m mesh, containing a natural assemblage of phytoplankton in the laboratory, at temperatures corresponding to ambient. Daily egg production rate ranged from 13.8±3.5 to 66.8± 15.1 eggs female–1 d–1 (mean ± 95% CL). The mean and maximum rates of daily egg production increased with temperature from 19.5 to 25.2 °C but then decreased with further increase in temperature at 28.4 through 29.1 °C, attaining the highest rates at approximately annual mean ambient water temperature (ca. 24–25 °C). The egg production rates increased linearly with chlorophyll a <40 m fraction. Hatching success varied from 68.6 to 91.9%. Cannibalism varied from 1.4±0.7 to 7.1±3.3 nauplii female–1 d–1 (mean ± 95% CL). These results suggest that water temperature and phytoplankton concentration are important factors affecting the egg production rate of A. lilljeborgi in the Cananéia Lagoon estuarine.  相似文献   

8.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

9.
Rates of O2 consumption and CO2 production, telemetered body temperature (Tb) and activity level were recorded from adult and subadult water shrews (Sorex palustris) over an air temperature (Ta) range of 3–32°C. Digesta passage rate trials were conducted before metabolic testing to estimate the minimum fasting time required for water shrews to achieve a postabsorptive state. Of the 228 metabolic trials conducted on 15 water shrews, 146 (64%) were discarded because the criteria for inactivity were not met. Abdominal Tb of S. palustris was independent of Ta and averaged 38.64±0.07°C. The thermoneutral zone extended from 21.2°C to at least 32°C. Our estimate of the basal metabolic rate for resting, postabsorptive water shrews (96.88±2.93 J g–1 h–1 or 4.84±0.14 ml O2 g–1 h–1) was three times the mass-predicted value, while their minimum thermal conductance in air (0.282±0.013 ml O2 g–1 h–1) concurred with allometric predictions. The mean digesta throughput time of water shrews fed mealworms (Tenebrio molitor) or ground meat was 50–55 min. The digestibility coefficients for metabolizable energy (ME) of water shrews fed stickleback minnows (Culaea inconstans) and dragonfly nymphs (Anax spp. and Libellula spp.) were 85.4±1.3% and 82.8±1.1%, respectively. The average metabolic rate (AMR) calculated from the gas exchange of six water shrews at 19–22°C (208.0±17.0 J g–1 h–1) was nearly identical to the estimate of energy intake (202.9±12.9 J g–1 h–1) measured for these same animals during digestibility trials (20°C). Based on 24-h activity trials and our derived ME coefficients, the minimum daily energy requirement of an adult (14.4 g) water shrew at Ta = 20°C is 54.0 kJ, or the energetic equivalent of 14.7 stickleback minnows.  相似文献   

10.
The golden spiny mouse (Acomys russatus) is an omnivorous desert rodent that does not store food, but can store large amounts of body fat. Thus, it provides a good animal model to study physiological and behavioural adaptations to changes in food availability. The aim of this study was to investigate the time course of metabolic and behavioural responses to prolonged food restriction. Spiny mice were kept at an ambient temperature of 27°C and for 3 weeks their food was reduced individually to 30% of their previous ad libitum food intake. When fed ad libitum, their average metabolic rate was 82.77±3.72 ml O2 h–1 during the photophase and 111.19±4.30 ml O2 h–1 during the scotophase. During food restriction they displayed episodes of daily torpor when the minimal metabolic rate gradually decreased to 16.07±1.07 ml O2 h–1, i.e. a metabolic rate depression of approximately 83%. During the hypometabolic bouts the minimum average body temperature Tb, decreased gradually from 32.6±0.1°C to 29.0±0.4°C, with increasing duration of consecutive bouts. In parallel, the animals increased their activity during the remaining daytime. Torpor as well as hyperactivity was suppressed immediately by refeeding. Thus golden spiny mice used two simultaneous strategies to adapt to shortened food supply, namely energysaving torpor during their resting period and an increase in locomotor activity pattern during their activity period.  相似文献   

11.
(R)-Phenylacetylcarbinol (PAC), a pharmaceutical precursor, was produced from benzaldehyde and pyruvate by pyruvate decarboxylase (PDC) of Candida utilis in an aqueous/organic two-phase emulsion reactor. When the partially purified enzyme in this previously established in vitro process was replaced with C. utilis cells and the temperature was increased from 4 to 21 °C, a screen of several 1-alcohols (C4–C9) confirmed the suitability of 1-octanol as the organic phase. Benzyl alcohol, the major by-product in the commercial in vivo conversion of benzaldehyde and sugar to PAC by Saccharomyces cerevisiae, was not formed. With a phase volume ratio of 1:1 and 5.6 g C. utilis l−1 (PDC activity 2.5 U ml−1), PAC levels of 103 g l−1 in the octanol phase and 12.8 g l−1 in the aqueous phase were produced in 15 h at 21 °C. In comparison to our previously published process with partially purified PDC in an aqueous/octanol emulsion at 4 °C, PAC was produced at a 4-times increased specific rate (1.54 versus 0.39 mg U−1 h−1) with simplified catalyst production and reduced cooling cost. Compared to traditional in vivo whole cell PAC production, the yield on benzaldehyde was 26% higher, the product concentration increased 3.9-fold (or 6.9-fold based on the organic phase), the productivity improved 3.1-fold (3.9 g l−1 h−1) and the catalyst was 6.9-fold more efficient (PAC/dry cell mass 10.3 g g−1).*Dedicated with gratitude to Prof. Dr. Franz Lingens – “Theo”.  相似文献   

12.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

13.
Summary The metabolic and cardiac responses to temperature were studied in two species (four subspecies) of western chipmunks (genusEutamias), inhabiting boreal and alpine environments. A specially designed (Fig. 1) implantable biopential radiotransmitter was used to measure heart rate in unrestrained animals. The estimated basal metabolic rates (EBMR) were 1.78 (E. minimus borealis), 1.64 (E. m. oreocetes), 1.50 (E. m. operarius), and 1.69 ml O2 g–1 h–1 (E. amoenus luteiventris), or 839, 752, 698, and 628 ml O2 kg–0.75 h–1, respectively, for the four subspecies (Table 1). The two alpine species (E.m.or. andE.m.op.) had significantly lower EBMR than both of their boreal counterparts. The EBMR from all animals are 120–135% of the predicted values based on body weights of the animals. The thermal neutral zone for the four subspecies ranged from 23.5 to 32°C and the minimum thermal conductances were 0.113, 0.111, 0.112 and 0.112 ml O2 g–1 h–1 °C–1, respectively, or 54.4, 54.0, 50.4 and 52.1 ml O2 kg–0.75 h–1 °C–1, respectively (Fig. 2). No interspecific diffence in conductance was observed. These values are 72 to 85% of their weight specific values. The body temperature ranged between 35.0 and 39.5°C and was usually maintained between 36 and 38°C in all subspecies between ambient temperatures of 3 and 32°C. The estimated basal heart rates were 273, 296, 273 and 264 beats/min, respectively, for the four subspecies, 49–55% of their predicted weight specific values. The resultant oxygen pulses (metabolic rate/heart rate) were 5.49, 4.50, 4.48 and 5.56×10–3 ml O2/beat, respectively, which are 2 to 2.4 times their weight specific values (Table 2).The observed reduction of basal heart rate without the corresponding decreases of basal metabolic rate and body temperature indicate sufficient compensatory increases in stroke volume and/or A-V oxygen difference at rest. Such cardiovascular modifications provide extra reserves when demand for aerobic metabolism rises during bursts of activity typically observed in the western chipmunk.Abbreviations A-V arterio-venous - EBMR estimated basal metabolic rate (ml O2 g–1 h–1) - HR heart rate (beats/min) - MR metabolic rate (ml O2 g–1 h–1) - OP oxygen pulse (ml O2/heart beat) - Ta, Tb ambient and body temperature (°C)  相似文献   

14.
Metabolic rate and evaporative water loss (EWL) were measured for a small, arid-zone marsupial, the stripe-faced dunnart (Sminthopsis macroura), when normothermic and torpid. Metabolic rate increased linearly with decreasing ambient temperature (Ta) for normothermic dunnarts, and calculated metabolic water production (MWP) ranged from 0.85±0.05 (Ta=30°C) to 3.13±0.22 mg H2O g–1 h–1 (Ta=11°C). Torpor at Ta=11 and 16°C reduced MWP to 24–36% of normothermic values. EWL increased with decreasing Ta, and ranged from 1.81±0.37 (Ta=30°C) to 5.26±0.86 mg H2O g–1 h–1 (Ta=11°C). Torpor significantly reduced absolute EWL to 23.5–42.3% of normothermic values, resulting in absolute water savings of 50–55 mg H2O h–1. The relative water economy (EWL/MWP) of the dunnarts was unfavourable, remaining >1 at all Ta investigated, and did not improve with torpor. Thus torpor in stripe-faced dunnarts results in absolute, but not relative, water savings.  相似文献   

15.
Experiments were conducted on the transport properties of the rabbit corneal endothelium at 22 °C, at which temperature the endothelium was able to stabilize the hydration of corneal stroma at physiological values. When bicarbonate was omitted from the bathing solution, the cornea swelled at 11 ± 1 μm.h−1. The swelling was completely reversible upon the subsequent re-introduction of bicarbonate. Similar swelling rates were observed when the endothelial pump was irreversibly inhibited with ouabain. In an Ussing-type chamber, the endothelium developed an electrical resistance of 25.0 ± 1.0 Ω.cm2 and a short circuit current (s.c.c.) of 6.0 ± 1.1 μA.cm−2. Neither electrical resistance of the corneal endothelium nor its s.c.c. were changed significantly after exposure to 0.5 mM amiloride. Ouabain abolished the s.c.c. but had no significant effect on resistance. When paired preparations were short-circuited, the endothelium developed a net H[14C]O 3 flux of 0.24 ± 0.03 μmoles.cm−2.h−1 into the aqueous humour, which was close in magnitude and direction to the s.c.c. of 0.22 ± 0.01 μEq.cm−2.h−1. There was no significant net flux of 86Rb (0.04 ± 0.03 μmoles.cm−2.h−1). Similar magnitude fluxes for both bicarbonate and rubidium were found with open-circuit preparations. It is suggested that a metabolically driven electrogenic bicarbonate current passing across the corneal endothelium is solely responsible for maintaining corneal hydration at 22 °C. Based on these and other studies, a model is proposed for active bicarbonate transport across corneal endothelium consisting of uphill entry into the cell through a baso-lateral membrane sodium/bicarbonate cotransporter (NBC) and downhill exit through an apical membrane anion channel. Studies on the transport properties of the endothelium at 35 °C are discussed and reasons suggested for the discrepancy between short circuit current and net bicarbonate flux at this closed eye temperature.  相似文献   

16.
We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp.4 the upper shore. These species were exposed to a range of temperatures (15–40°C) in aquaria for up to 6 h. At 20 °C F. exquisitus exhibited a mean gill ventilation rate of 26 ± 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 ± 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 °C) to high temperature (35 °C) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus.While both species emerged from the water at high temperatures (>30 °C) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.  相似文献   

17.
While many Antarctic organisms possess only limited ability to respond to environmental temperature change, there is now substantial evidence to confirm that the notothenioid fish, Pagothenia borchgrevinki, has retained some thermal flexibility and can successfully acclimate to a 5°C increase in temperature. Previous research demonstrated that after acclimation to 4°C, resting cardiac output in this species was thermally independent, while cold-adapted fish demonstrated thermal dependence of cardiac output. Here, we extend this research into cardiovascular plasticity and report the following: (1) The mechanisms responsible for the thermal independence of cardiac output in warm-acclimated (4°C, for 4 weeks) fish include a combination of warm-induced bradycardia and cold-induced tachycardia bouts. (2) These acute responses are under cholinergic control. (3) Changes to the thermal sensitivity of heart rate and ventilation rate result in concomitant changes to cardio-respiratory coupling in warm-acclimated fish.  相似文献   

18.
Summary Dehydration of the desert iguana,Dipsosaurus dorsalis, resulted in a progressive elevation in the magnitude of the skin temperature necessary to elicit thermal panting (i.e., the panting threshold). Panting threshold increased from 43.4±0.8 °C at 100% initial body weight (IBW) to 45.4±1.2 °C at 90% IBW to 45.7±0.9 °C at 80% IBW. Plasma osmolality showed no significant change with dehydration to 80% IBW. Changes in plasma osmolality, whether induced by NaCl or non-ionic sucrose loading, had a significant impact on panting threshold. Increasing plasma osmolality resulted in an elevation of panting threshold while decreasing plasma osmolality resulted in lower panting thresholds. Decreasing body fluid volume by exsanguination of 1 ml whole blood/100 g body weight resulted in a mean increase in panting threshold by 0.7±0.2 °C. Volume loading with 160 mM NaCl (approximately isosmotic) had no significant effect on panting threshold. These data suggest that plasma osmolality and decreases in body fluid volume may be potent modulators of panting threshold during periods of water deprivation. However, at least in desert iguanas, increases in plasma osmolality would not appear to be an important factor in the elevation of panting threshold during dehydration to 80% IBW.  相似文献   

19.
In 2 replicated factorial experiments, 7-h climate chamber exposures were used to study the responses of adult NZW rabbits to a range of elevated temperatures and humidities. At 18 mm Hg water vapour pressure, 23.8° C was well tolerated, rectal temperature (RT) and respiration rate (RR) averaging 38.6±0.3° C and 82.9±15.5 breaths/min, respectively. Both parameters were elevated (P<0.001) at 32.2°, 37.8° and 43.3° C. RT and RR reached plateau levels of 39.5–40.1° C and 410–460/min at 32.2° C, which was tolerated for the full 7-h test period. Test temperatures of 37.8° and 43.3° C, on the other hand, could be tolerated for only 80 and 40 min respectively, before RT reached the safe upper limit of 41.7° C. Final RR values at 37.8° and 43.3° C were 701.6±42.7 and 812±55.1/min, respectively. In a 34.5° C atmosphere a humidity of 21 mm Hg water vapour pressure was classified as dry, and was tolerated for 323±123 min. RT and RR increased by 0.6° C and 316/min during the first 20 min of exposure (P<0.05). Thereafter both parameters increased progressively, but with no significant differences between successive recording periods, until RR reached 550.3±88.8/min at 41.7° C RT. Humidities of 25, 29 and 33 mm Hg water vapour pressure were, on the other hand, classified as wet and were tolerated for only 92±22, 81±16 and 119±50 min, respectively. RR at the times that RT reached 41.7° C at these 3 humidities was 732±26, 789±30 and 764±23/min, respectively. The results point to the likelihood that thermal stress will adversely affect the productivity and welfare of NZW rabbits in the tropics unless adequate housing environments are provided. Significant between-individual phenotypic differences in heat tolerance suggest the need for genetic studies of the possibility of selecting for improved heat tolerance.  相似文献   

20.
The feed intake, growth, oxygen consumption and ammonia excretion of juvenile Arctic charr were measured over period of four weeks at different temperatures which were either constant (11.0, 14.4, 17.7 °C) or fluctuated daily (14.3 ± 1 °C). Maximum feed intake was estimated to occur at 14.3 °C, while oxygen consumption and nitrogen excretion were highest at the highest temperature, and growth rate was estimated to be highest at 13.9 °C. Feed conversion efficiency was estimated to be highest at 13.2 °C, where over 62.7% of ingested energy was allocated to growth. Metabolic rate accounted for 16–30% of ingested energy and nitrogen excretion was under 3% of ingested energy. The nitrogen budget was under similar thermal influences to the energy budget. Thermal fluctuation increased metabolic rate, but not feed intake, leading to a reduction in feed conversion efficiency under fluctuating temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号