首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In view of the existence of a different secretion pattern of growth hormone (GH) between male and female rats, the aim of the present study was to analyse the role played by ovarian steroid hormones in the modulation of such secretion. To do so, postpuberal female rats were ovariectomized and killed at 30 days after the operation. The basal serum levels of growth hormone, together with cell area, cytoplasmic area and nuclear area of the hypophyseal somatotropic cells of normal and ovariectomized rats were compared. The results obtained show that ovariectomy induces a significant decrease (p<0.05) in the basal serum levels of GH, accompanied by an increase in cellular and cytoplasmic areas, with no significant differences in nuclear area. Overiectomy was also accompanied by an increase in reaction intensity and the number of GH-immunoreactive cells (p<0.01). These findings point to the shift towards a masculine secretory and morphological pattern following ovariectomy and supports the hypothesis that ovarian steroids intervene in the establishment of a different pattern in females compared to males.  相似文献   

2.
3.
R F Walker  S W Yang  B B Bercu 《Life sciences》1991,49(20):1499-1504
Aging is associated with a blunted growth hormone (GH) secretory response to GH-releasing hormone (GHRH), in vivo. The objective of the present study was to assess the effects of aging on the GH secretory response to GH-releasing hexapeptide (GHRP-6), a synthetic GH secretagogue. GHRP-6 (30 micrograms/kg) was administered alone or in combination with GHRH (2 micrograms/kg) to anesthetized female Fischer 344 rats, 3 or 19 months of age. The peptides were co-administered to determine the effect of aging upon the potentiating effect of GHRP-6 on GHRH activity. The increase in plasma GH as a function of time following administration of GHRP-6 was lower (p less than 0.001) in old rats than in young rats; whereas the increase in plasma GH secretion as a function of time following co-administration of GHRP-6 and GHRH was higher (p less than 0.001) in old rats than in young rats (mean Cmax = 8539 +/- 790.6 micrograms/l vs. 2970 +/- 866 micrograms/l, respectively; p less than 0.01). Since pituitary GH concentrations in old rats were lower than in young rats (257.0 +/- 59.8 micrograms/mg wet wt. vs. 639.7 +/- 149.2 micrograms/mg wet wt., respectively; p less than 0.03), the results suggested that GH functional reserve in old female rats was not linked to pituitary GH concentration. The differential responses of old rats to individually administered and co-administered GHRP-6 are important because they demonstrate that robust and immediate GH secretion can occur in old rats that are appropriately stimulated. The data further suggest that the cellular processes subserving GH secretion are intact in old rats, and that age-related decrements in GH secretion result from inadequate stimulation, rather than to maladaptive changes in the mechanism of GH release.  相似文献   

4.
In order to study a possible direct action of LH-RH analogs on the pituitary lactotrophs, we investigated the effect of long-term in vivo pretreatment with D-Trp-6-LH-RH on in vitro secretion of PRL and luteinizing hormone (LH) by the pituitary glands from male and female rats. In vivo pretreatment with D-Trp-6-LH-RH (50 micrograms/day, SC) for 15 days greatly reduced basal in vitro PRL release (p less than 0.01) in female, but not in male pituitary glands. TRH-stimulated PRL secretion was not affected by pretreatment with D-Trp-6-LH-RH in female rats, but was impaired in male pituitaries. Acute in vitro exposure to D-Trp-6-LH-RH did not modify PRL secretion by female pituitary glands pretreated in vivo with the analog. However, this same in vivo pretreatment greatly decreased PRL release from male pituitaries (p less than 0.01). Basal in vitro LH release by male pituitary glands was partially lowered by in vivo pretreatment with D-Trp-6-LH-RH, as compared to controls (p less than 0.01), while basal LH release in female pituitaries remained at control levels. Finally, D-Trp-6-LH-RH-induced stimulation of in vitro LH release was severely impaired in female pituitaries (p less than 0.01) but only slightly reduced in the males.  相似文献   

5.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

6.
The LH-immunoreactive cells of the adult rat hypophysis were studied morphometrically after chronic treatment with methoclopramide. The morphological features of these cells showed modifications in both male and female rats, after treatment. Additionally, morphometric changes revealed a significant decrease (p less than 0.05) in both cytoplasmic area, which was more evident in the female rats, and nuclear area, with respect to the normal and control animals. These findings suggest that chronic inhibition of the dopaminergic system in rats atrophies LH-immunoreactive gonadotrophic cells of rats.  相似文献   

7.
The effects of bilateral vasectomy on hormone serum levels as well as Leydig cell and associated macrophage structure were analysed in parallel in rats 36 weeks following the operation. Serum testosterone was decreased in vasectomized rats (1.96 +/- 0.11 ng/ml) compared with control animals (3.44 +/- 0.22 ng/ml, p less than 0.05). Vasectomy also resulted in an increase in serum luteinizing hormone (LH) to 0.299 +/- 0.02 ng/ml compared to the control group (0.175 +/- 0.01 ng/ml, p less than 0.05). Also serum follicle-stimulating hormone (FSH) was increased following vasectomy (350.88 +/- 15.5 ng/ml) compared to 132.0 +/- 4.8 ng/ml in control animals (p less than 0.01). Morphometric analysis of Leydig cells showed hypertrophy with a 19% increase of total cell area, p less than 0.01 (cytoplasm 28%, nucleus 8% increase). On the ultrastructural level, leydig cells demonstrated massively dilated smooth endoplasmic reticulum characteristic for stimulated cells. There was also a significant hypertrophy of the Leydig cell-associated macrophages. The macrophage cell area was enlarged by 22%, p less than 0.01 (cytoplasm 25%, nucleus 18%). Vasectomy also led to remarkable ultrastructural changes of macrophages with a marked dilated and extended rough endoplasmic reticulum. Macrophages were found in apposition to Leydig cells with close cellular contact zones, and they frequently formed cell extensions on Leydig cells. Our data obtained following vasectomy indicate that, by their close contacts to Leydig cells, as well as the known influence on Leydig-cell steroidogenesis, macrophages may form the basis of a local immunoendocrine regulation of the pituitary-gonadal axis.  相似文献   

8.
Growth hormone (GH) secretion is controlled by growth hormone releasing factor (GRF) but changes in the circulating level of this hormone are difficult to measure. Insulin-like growth factor (IGF-I) is a GH-dependent growth factor which significantly but slightly inhibits stimulated GH release in vitro. We have tested the effects of GRF and IGF-I on GH release in pregnancy, a state in which serum concentrations of GH are elevated and levels of IGF-I are lowered. We have found, in a system of acutely dispersed adenohypophysial cells prepared from pregnant (day 21-23) or control cycling female rats, that adenohypophysial cells from pregnant rats have an increased GH release with GRF. In contrast, IGF-I inhibition is similar but slightly smaller. These altered responses may result in elevated serum GH levels during pregnancy.  相似文献   

9.
The involvement of the adrenal progesterone and corticosterone in the early gonadotropin secretion associated with the pheromonal restoration of ovarian cyclic activity (PRCA) in aging female rats is studied. PRCA is induced by male urinary pheromones and is preceded by an alpha-adrenergic-mediated release of the hypothalamic decapeptide luteinizing hormone-releasing hormone and plasma increases of estradiol, progesterone and the gonadotropins luteinizing hormone and follicle stimulating hormone. Aging reproductive Wistar female rats were used to study the effects of bilateral adrenalectomy and of a subcutaneous injection of the antisteroid RU486 on plasma levels of corticosterone, progesterone and gonadotropins in rats stimulated with nasal spraying of male urine (MU) or saline. The results demonstrate that progesterone and corticosterone released by MU are from adrenal origin, and that these adrenal secretory products are critical for MU-induced increase of gonadotropins. This suggests that olfactory stimulation of ACTH release stimulates adrenal release of progesterone and corticosterone, and both trigger the events that initiate the activation of the hypothalamus-pituitary-ovarian axis that leads to PRCA.  相似文献   

10.
To determine the time onset of the growth hormone (GH) alteration in the genetically obese rat, we studied the in vivo and in vitro rat growth hormone releasing factor (rGRF(1-29)NH2)-induced GH secretion in 6- and 8-week-old lean and obese male Zucker rats. Under sodium pentobarbital anesthesia, rGRF(1-29)NH2 (GRF) was injected intravenously at two doses: 0.8 and 4.0 micrograms/kg b.w. Basal serum GH concentrations were similar in lean and obese age-matched animals. The GH response to both GRF doses tested was unchanged in 6-week-old obese rats as compared to their lean litter mates. In contrast, a significant decrease of the GH secretion in response to 4.0 micrograms/kg b.w. GRF was observed in the 8-week-old obese rats. The effect of GRF (1.56, 6.25 and 12.5 pM) was further studied in vitro, in a perifusion system of freshly dispersed anterior pituitary cells of lean and obese Zucker rats. Basal GH release was similar in the 6-week-old animal group. In contrast, it was significantly decreased in 8-week-old obese rats as compared to their lean litter mates. Stimulated GH response to 1.56 and 6.25 pM GRF was significantly greater in the 6-week-old obese group than in the age-matched control group. In contrast, the GH response to all GRF concentrations tested was significantly decreased in the 8-week-old obese rats as compared to their respective lean siblings. In 8-week-old obese rats, a decrease of GH pituitary content and an increase of hypothalamic somatostatin (SRIF) concentration were observed. Insulin and free fatty acid serum were significantly increased in 8-week-old obese rats. In contrast, lower insulin-like growth factor I serum levels were observed in the obese animals as compared to their lean litter mates. Finally, to further clarify the role of the periphery in the inhibition of GH secretion observed in the 8-week-old fatty rats, we exposed cultured pituitary cells of 8-week-old lean animals to 17% serum of their obese litter mates. A significant decrease of GRF-stimulated GH secretion of lean rat pituitary cells exposed to the obese serum was noted (P less than 0.05). This study demonstrates that, in the obese Zucker rat, an alteration of the GH response to GRF is evident by the 8th week of life. This defective GH secretion could be related to peripheral and central abnormalities.  相似文献   

11.
To more completely assess the means by which alcohol impairs the female reproductive cycle in rats, we have measured hypothalamic luteinizing hormone-releasing hormone (LHRH), pituitary LHRH receptor content, and the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (Prl), and progesterone (P). After two successive cycles, the animals began receiving either an alcohol or a isocaloric control liquid diet regimen beginning on the first day of diestrus, with continued monitoring of the estrous cycle throughout the experiment. An additional set of controls consisted of animals maintained on lab chow and water provided ad libitum. Our results indicate that those animals receiving the control diets showed uninterrupted estrous patterns, whereas those animals receiving the alcohol diet remained in diestrus. Additionally, the alcohol-treated animals showed an increase (p less than 0.05) in LHRH content, with a concomitant decrease (p less than 0.01) in serum LH, and an increase (p less than 0.01) in serum Prl. No significant differences were detected in serum FSH levels or pituitary LHRH receptor content. No differences were detected in serum P levels. These results indicate that short-term alcohol administration disrupts the female reproductive cycle, causing persistent diestrus, and support our hypothesis that the alcohol-induced depression in serum LH levels is due to a diminished release rate of hypothalamic LHRH.  相似文献   

12.
The aim of this work was to study the effect of cyclosporine on the somatotropic axis. Accordingly, growth hormone (GH) secretion, circulating insulin-like growth factor I (IGF-I) and IGF binding proteins (IGFBPs) in response to cyclosporin A (CsA) treatment were examined in adult male Wistar rats. Cyclosporine administration (5, 10 or 20 mg/Kg daily) over 8 days did not modify the body weight, but it did decrease serum concentration of corticosterone and increased serum IGF-I and GH levels. Rats treated with 5 and 10 mg/Kg of cyclosporine had similar levels of serum IGFBPs to control rats, but there was an increase in circulating IGFBP-3 and IGFPB-1,2 in the group treated with 20 mg/Kg of CsA. The increase in circulating GH correlates with a decrease in pituitary GH content in CsA treated rats, with no modification in hypothalamic somatostatin content, suggesting an increase in pituitary GH release. In order to test this hypothesis, anterior pituitary cell cultures were exposed to different CsA concentrations during a 4 h incubation period. Cyclosporine increased GH secretion in cultured pituitary cells (p<0.05). These data suggest that cyclosporine increases circulating IGF-I and GH by stimulating pituitary GH release.  相似文献   

13.
The effects of a growth hormone releasing factor, human pancreatic growth hormone releasing factor-44 (hpGRF-44), on growth hormone (GH) secretion in calves, heifers and cows were studied. A single intravenous (iv) injection of 0.1, 0.25, 0.5 or 1.0 microgram of synthetic hpGRF-44 per kg of body weight (bw) in calves significantly elevated the circulating GH level within 2-5 min, while no increase in plasma GH was observed in saline injected control calves. The plasma GH level increased proportionally to the log dose of hpGRF-44, and reached a peak at 5-10 min (p less than 0.01). Subcutaneous injection of hpGRF-44 also elevated the plasma GH level, but the peak value at 15 min was 37% of that of iv injection (p less than 0.05). Intravenous injection of 0.25 microgram of hpGRF-44 per kg of bw to female calves, heifers, and cows significantly elevated mean the GH levels from 8.5, 2.3, and 1.6 ng/ml at 0 time to peak values of 97, 26, and 11.6 ng/ml, respectively (p less than 0.01). The plasma GH response and basal level in calves were significantly higher than those of heifers or cows (p less than 0.025). The plasma GH response to hpGRF-44 as well as the basal level decreased with advancing age. The plasma GH response to hpGRF-44 and basal GH in male calves were significantly greater than those in female calves (p less than 0.001). These results indicate that synthetic hpGRF-44 is a potent secretogogue for bovine GH, and suggest its usefulness in the assessment of GH secretion and reserve in cattle.  相似文献   

14.
In a previous paper we have demonstrated that growth hormone (GH) responses to growth hormone releasing hormone (GHRH) are higher in premenopausal normal women than in age matched healthy men. As in type I diabetes mellitus various disturbances of GH secretion have been reported, the aim of our study was to assess the effect of sex on basal and GHRH stimulated GH secretion in type I diabetes mellitus. In 21 female and 23 male type I diabetic patients and 28 female and 30 male control subjects GH levels were measured before and after stimulation with GHRH (1 microgram/kg body weight i.v.) by radioimmunoassay. GH responses to GHRH were significantly higher in female than in male control subjects (p less than 0.02), whereas the GH levels following GHRH stimulation were similar in female and male type I diabetic patients. GH responses to GHRH were significantly higher in the male type I diabetic patients than in the male control subjects (p less than 0.001); in the female type I diabetic patients and the female control subjects, however, GH responses to GHRH were not statistically different. The absence of an effect of sex on GHRH stimulated GH responses in type I diabetes mellitus provides further evidence of an abnormal GH secretion in this disorder.  相似文献   

15.
Summary The liver of rodents is sexually differentiated, i.e. the female liver differs from the male liver. This differentiation is largely controlled by the pattern of growth hormone (GH) secretion. We have attempted to maintain GH-dependent differentiation of cultured rat hepatocytes. We examined the level of alcohol dehydrogenase (ADH) activity, which responds to GH and is higher in female than in male liver, and the estrogen receptor, which is dependent on GH but is present in equal amounts in males and females. ADH activity was maintained in cells from male rats, but fell by 40% in cells from females in medium supplemented with insulin and dexamethasone. The estrogen receptor content of female cells fell dramatically to undetectable levels within 2 d of culture. Extensive supplementation of the medium failed to prevent the decrease in ADH activity in female cells; similarly, the addition of female sex steroids; rat serum; pituitary extracts; rat, human, or bovine GH; or ovine prolactin failed to maintain the enzyme activity. Insulin, dexamethasone, thyroid hormone plus GH or prolactin, or the combination of all five hormones also failed to prevent the loss of estrogen receptors. Short-term cultures of rat hepatocytes, although retaining the liver-specific expression of ADH at the male level, lose GH-dependent expression of the estrogen receptor and stimulation of ADH activity. Supported by grants AA 00081 and AA 06434 from the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD.  相似文献   

16.
《Life sciences》2005,76(23):2753-2761
KP-102 (D-Ala-D-β-Nal-Ala-Trp-D-Phe-Lys-NH2), a new second generation hexapeptide, has a potent growth hormone (GH)-releasing action in vivo and in vitro. Here, we evaluated the GH-releasing action of KP-102 under pentobarbital (PB) anesthesia in neonatally sodium-glutamate-monohydrate-treated low growth (NMSG- LG) rats. The plasma GH level in NMSG-LG rats after i.v. administration of KP- 102 at 100 μg/kg was 1/6.7 (95% CL. 1/14.7–1/3.0) of that in normal rats given the same dose (p < 0.01). However, the increase was significant compared with that in normal rats after saline administration (p < 0.0l). The plasma GH releasing action of KP-102 at 100 μg/kg i.v. in rats with lesions in the bilateral hypothalamic arcuate nuclei (ARC), was about 1/6.3 (95% C.L. 1/12.4–1/3.2) of that in normal rats under PB anesthesia (p < 0.01). When KP-102 was injected into the ARC at doses of 0.0002, 0.02 and 2 μg/rat, GH release was dose-related (p < 0.01) under PB anesthesia. KP-102 at 2 μg i.c.v. also increased the plasma GH levels (p < 0.01) to about 1/8.3 (95% C.L. 1/22.7–1/3.1) of that by systematic administration, at the same potency as the ARC injection (1/13.7 and 95% C.L. 1/37.2–1/5.0). These findings suggest that KP-102 potently stimulates the GH release by a direct or indirect antagonism of somatostatin (SRIF) and growth hormone releasing hormone (GHRH) release in the hypothalamus and by a direct action on the pituitary. Furthermore, the GH-releasing action of KP-102 was similar and additive upon both regions in vivo at the maximum effective dose. Moreover, since the GH-release in response to KP-102 administration differed between NMSG-LG and normal rats, and since KP-102 increased the GH release even in NMSG-LG rats, it should be evaluated in the hypophysial GH secretion tests, and may be used to treat the hypophysial GH secretion insufficiency.  相似文献   

17.
We have measured changes in circulating immunoreactive (ir-) inhibin in male and female rats using an RIA with an antiserum raised against porcine inhibin alpha (1-26)-Gly-Tyr. The same synthetic peptide was used for standards and for the preparation of tracer. Serum ir-inhibin levels were significantly higher in intact female than in intact male rats (p less than 0.001). Immunoreactive inhibin was significantly reduced in both sexes 24 h after bilateral gonadectomy (p less than 0.0001). Unilateral ovariectomy (ULO) of female rats on metestrus caused a transient decrease in serum inhibin 8 h after surgery, but levels were not significantly different from those of sham-operated controls at later times after surgery. Increases in serum FSH and LH were observed for 8-18 h after ULO. Serum ir-inhibin levels were also measured on the early morning of estrus during the secondary FSH surge. At this time, ir-inhibin levels were low, while FSH levels were high and LH levels were low. These results show that serum ir-inhibin levels in rats are decreased at times when serum FSH levels are high.  相似文献   

18.
Shortly after administration of 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (6-MeOTHBC) and yohimbine to normal or hypothyroid rats [the latter exhibiting chronically elevated levels of serotonin (5-HT) neuronal activity in the hypothalamus] there was a highly significant increase in hypothalamic noradrenaline (NA) activity and in ACTH release concomittant with a reduction in hypothalamic 5-HT activity (P less than 0.01) and in growth hormone (GH) (P less than 0.01) and in thyroid stimulating hormone (TSH) (P less than 0.01) release from the pituitary. Both compounds caused an increase in hypothalamic dopamine (DA) metabolism and in pituitary prolactin (PRL) release in normal rats (P less than 0.01) but only yohimbine exerted this action in hypothyroid rats. Lower doses of 6-MeOTHBC exerted a relatively specific effect in hypothyroid rats, reducing (P less than 0.01) 5-HT neuronal activity in parallel with pituitary TSH secretion (P less than 0.05). While gross effects of 6-MeOTHBC and yohimbine were similar with respect to their effects on NA and 5-HT status in the hypothalamus, there were quantitative differences. 6-MeOTHBC always caused a greater decrease in 5-HT turnover and a lesser increase in NA turnover than did yohimbine. On the basis of these studies we suggest that the effect of tetrahydro-beta-carboline-related alkaloids on pituitary hormone release may be due to their influence on hypothalamic monoamine status and the subsequent alteration of the hypothalamic-pituitary control system.  相似文献   

19.
The effects of testosterone and estrogen on the pituitary growth hormone response to hypothalamic growth hormone-releasing factor (GRF) were evaluated in vivo using male and female rats and in vitro using a pituitary cell monolayer culture system. In vivo the increase in plasma growth hormone (GH) concentration in response to a 500 ng/kg dose of GRF was similar in gonadectomized male and female rats. Pretreatment of intact and gonadectomized male rats with testosterone caused significant enhancement of the pituitary GH response to GRF, whereas pretreatment of gonadectomized female rats with 17 beta-estradiol did not alter the response. The GH response to GRF was not different between prepubertal (i.e., 30-day-old) male and female rats. However, following puberty (i.e., by 60 days of age), the response in male rats was significantly greater than that observed in female rats. The in vitro preincubation of anterior pituitary cells with either testosterone or 17 beta-estradiol did not cause any shift in the dose-response curve between GRF and GH. These results demonstrated that androgens play an active role in modulating the pituitary response to GRF in vivo.  相似文献   

20.
This study compares the peak serum growth hormone (GH) concentration during slow wave sleep with the serum GH responses to insulin-induced hypoglycaemia and intravenous arginine infusion in 23 children referred because of short stature (20) or precocious puberty (3). Peak serum GH concentration during sleep correlated significantly with peak GH response to insulin hypoglycaemia (r = 0.64, p less than 0.01) and arginine infusion (r = 0.57, p less than 0.01). 3 children had subnormal (less than 15 mU/l) peak serum GH concentrations during sleep but normal responses to either insulin-induced hypoglycaemia or intravenous arginine infusion. 1 child had a normal peak serum GH response to sleep but subnormal responses to insulin and arginine. Sleep studies of GH secretion may be indicated when the GH responses to pharmacological stimuli are inconsistent with the observed growth pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号