首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Progress through the division cycle of present day eukaryotic cells is controlled by a complex network consisting of (i) cyclin-dependent kinases (CDKs) and their associated cyclins, (ii) kinases and phosphatases that regulate CDK activity, and (iii) stoichiometric inhibitors that sequester cyclin-CDK dimers. Presumably regulation of cell division in the earliest ancestors of eukaryotes was a considerably simpler affair. Nasmyth (1995) recently proposed a mechanism for control of a putative, primordial, eukaryotic cell cycle, based on antagonistic interactions between a cyclin-CDK and the anaphase promoting complex (APC) that labels the cyclin subunit for proteolysis. We recast this idea in mathematical form and show that the model exhibits hysteretic behaviour between alternative steady states: a Gl-like state (APC on, CDK activity low, DNA unreplicated and replication complexes assembled) and an S/M-like state (APC off, CDK activity high, DNA replicated and replication complexes disassembled). In our model, the transition from G1 to S/M ('Start') is driven by cell growth, and the reverse transition ('Finish') is driven by completion of DNA synthesis and proper alignment of chromosomes on the metaphase plate. This simple and effective mechanism for coupling growth and division and for accurately copying and partitioning a genome consisting of numerous chromosomes, each with multiple origins of replication, could represent the core of the eukaryotic cell cycle. Furthermore, we show how other controls could be added to this core and speculate on the reasons why stoichiometric inhibitors and CDK inhibitory phosphorylation might have been appended to the primitive alternation between cyclin accumulation and degradation.  相似文献   

2.
Replication of DNA within Saccharomyces cerevisiae chromosomes is initiated from multiple origins, whose activation follow their own inherent time schedules during the S phase of the cell cycle. It has been demonstrated that a characteristic replicative complex (RC) that includes an origin recognition complex is formed at each origin and shifts between post- and pre-replicative states during the cell cycle. We wanted to determine whether there was an association between this shift in the state of the RC and firing events at replication origins. Time course analyses of RC architecture using UV-footprinting with synchronously growing cells revealed that pre-replicative states at both early and late firing origins appeared simultaneously during late M phase, remained in this state during G(1) phase, and converted to the post-replicative state at various times during S phase. Because the conversion of the origin footprinting profiles and origin firing, as assessed by two-dimensional gel electrophoresis, occurred concomitantly at each origin, then these two events must be closely related. However, conversion of the late firing origin occurred without actual firing. This was observed when the late origin was suppressed in clb5-deficient cells and a replication fork originating from an outside origin replicated the late origin passively. This mechanism ensures that replication at each chromosomal locus occurs only once per cell cycle by shifting existing pre-RCs to the post-RC state, when it is replicated without firing.  相似文献   

3.
The first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C). Extended suppression of APC/C activity during interphase of mouse pluripotent cells promotes rapid cell cycle progression by allowing stabilization of cyclins, whereas unopposed APC/C activity during S phase of mouse trophoblast cells triggers proteasomal-mediated degradation of geminin and giant cell formation. While differential APC/C activity might govern the atypical cell cycles observed in pre-implantation mouse embryos, geminin is a critical APC/C substrate that: (1) escapes degradation in pluripotent cells to maintain expression of Oct4, Sox2 and Nanog and (2) mediates specification and endoreduplication when targeted for ectopic destruction in trophoblast. Thus, in contrast to trophoblast giant cells that lack geminin, geminin is preserved in both mouse pluripotent cells and non-endoreduplicating human cytotrophoblast cells.Key words: APC/C, geminin, Emi1, cell cycle, pluripotency, trophoblast, endoreduplication, DNA damage  相似文献   

4.
DNA replication is a key step in initiating cell proliferation. Loading hexameric complexes of minichromosome maintenance (MCM) helicase onto DNA replication origins during the G1 phase is essential for initiating DNA replication. Here, we examined MCM hexamer states during the cell cycle in human hTERT-RPE1 cells using multicolor immunofluorescence-based, single-cell plot analysis, and biochemical size fractionation. Experiments involving cell-cycle arrest at the G1 phase and release from the arrest revealed that a double MCM hexamer was formed via a single hexamer during G1 progression. A single MCM hexamer was recruited to chromatin in the early G1 phase. Another single hexamer was recruited to form a double hexamer in the late G1 phase. We further examined relationship between the MCM hexamer states and the methylation levels at lysine 20 of histone H4 (H4K20) and found that the double MCM hexamer state was correlated with di/trimethyl-H4K20 (H4K20me2/3). Inhibiting the conversion from monomethyl-H4K20 (H4K20me1) to H4K20me2/3 retained the cells in the single MCM hexamer state. Non-proliferative cells, including confluent cells or Cdk4/6 inhibitor-treated cells, also remained halted in the single MCM hexamer state. We propose that the single MCM hexamer state is a halting step in the determination of cell cycle progression.  相似文献   

5.
6.
Cell cycle modifications are among the early events which take place during the induced differentiation of murine erythroleukemia (MEL) cells; a transient accumulation of the cells in the G1 phase of the cell cycle, followed by a re-entry of the cells into a proliferation state, has been described. In order to characterize a putative role of serum in such variations, we have studied the modifications of the cell cycle parameters when cells were induced to differentiate in the presence or in the absence of seric factors. We show that, in the absence of exogenous factors brought by serum, the G1 accumulation was enhanced both in amplitude and in duration, but cells were still able to bypass the G1 block and re-enter into the S phase. These results indicate that the resumption of cell proliferation after the transient block is under synergistic control of seric and endogenous factors, but these later are sufficient to overcome the block. However, MEL cells were unable to differentiate in the absence of seric factors, as measured by the number of benzidine-positive cells during induction with hexamethylene-bisacetamide (HMBA) or butyric acid. This capacity to differentiate was recovered when serum was added back to the culture medium, and the efficiency of recovery was maximal when cells underwent a full round of DNA replication in the presence of serum after the G1 block. The analysis of two molecular markers of cell differentiation confirmed these results.  相似文献   

7.
In recent years, molecular biologists have uncovered a wealth of information about the proteins controlling cell growth and division in eukaryotes. The regulatory system is so complex that it defies understanding by verbal arguments alone. Quantitative tools are necessary to probe reliably into the details of cell cycle control. To this end, we convert hypothetical molecular mechanisms into sets of nonlinear ordinary differential equations and use standard analytical and numerical methods to study their solutions. First, we present a simple model of the antagonistic interactions between cyclin-dependent kinases and the anaphase promoting complex, which shows how progress through the cell cycle can be thought of as irreversible transitions (Start and Finish) between two stable states (G1 and S-G2-M) of the regulatory system. Then we add new pieces to the "puzzle" until we obtain reasonable models of the control systems in yeast cells, frog eggs, and cultured mammalian cells.  相似文献   

8.
9.
Mailand N  Diffley JF 《Cell》2005,122(6):915-926
Cyclin-dependent kinases (CDKs) restrict DNA replication origin firing to once per cell cycle by preventing the assembly of prereplicative complexes (pre-RCs; licensing) outside of G1 phase. Paradoxically, under certain circumstances, CDKs such as cyclin E-cdk2 are also required to promote licensing. Here, we show that CDK phosphorylation of the essential licensing factor Cdc6 stabilizes it by preventing its association with the anaphase promoting complex/cyclosome (APC/C). APC/C-dependent Cdc6 proteolysis prevents pre-RC assembly in quiescent cells and, when cells reenter the cell cycle from quiescence, CDK-dependent Cdc6 stabilization allows Cdc6 to accumulate before the licensing inhibitors geminin and cyclin A which are also APC/C substrates. This novel mechanism for regulating protein stability establishes a window of time prior to S phase when pre-RCs can assemble which we propose represents a critical function of cyclin E.  相似文献   

10.
11.
The control of cell proliferation can result from the coupling of growth arrest and differentiation. In this regard, we recently demonstrated that growth arrest which precedes the differentiation of 3T3 T proadipocytes must occur at a distinct state in the G1 phase of the cell cycle (GD). Cells arrested at GD differ in several biological parameters from cells arrested in G1 at other states induced by either serum deprivation (GS) or nutrient deficiency (GN). Specifically, GD-arrested cells can differentiate in the absence of DNA synthesis and GD-arrested cells can be induced to proliferate when stimulated with 1-methyl-3-isobutylxanthine; GS- and GN-arrested cells cannot. In addition, GD-, GS- and GN-arrested cells reside at topographically distinct states in G1. We now report that GD-arrested proadipocytes are also distinct in that they are highly sensitive to a cytotoxic effect of 8-bromocyclic AMP, whereas GS- and GN-arrested cells are not.  相似文献   

12.
13.
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.  相似文献   

14.
The APC/C is an E3 ubiquitin ligase that, by targeting substrates for proteasomal degradation, plays a major role in cell cycle control. In complex with one of two WD40 activator proteins, Cdc20 or Cdh1, the APC/C is active from early mitosis through to late G1 and during this time targets many critical regulators of the cell cycle for degradation. However, this destruction is carefully ordered to ensure that cell cycle events are executed in a timely fashion. Recent studies have begun to shed light on how the APC/C selects different substrates at different times in the cell cycle. One particular problem is how the APC/C recognizes its first set of substrates, Nek2A and cyclin A, in early mitosis when, at this time, the spindle assembly checkpoint (SAC) inhibits most APC/C-dependent degradation. The answer may lie in how substrates are recruited to the APC/C. While checkpoint-dependent substrates appear to require Cdc20 for recruitment, experiments on the early mitotic substrate Nek2A demonstrate that it can bind the APC/C in the absence of Cdc20. The direct interaction of substrates with core subunits of the APC/C could allow their degradation to proceed unhindered even when the SAC is active.  相似文献   

15.
The first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C). Extended suppression of APC/C activity during interphase of mouse pluripotent cells promotes rapid cell cycle progression by allowing stabilization of cyclins, whereas unopposed APC/C activity during S phase of mouse trophoblast cells triggers proteasomal-mediated degradation of geminin and giant cell formation. While differential APC/C activity might govern the atypical cell cycles observed in pre-implantation mouse embryos, geminin is a critical APC/C substrate that: (1) escapes degradation in pluripotent cells to maintain expression of Oct4, Sox2 and Nanog; and (2) mediates specification and endoreduplication when targeted for ectopic destruction in trophoblast. Thus, in contrast to trophoblast giant cells that lack geminin, geminin is preserved in both mouse pluripotent cells and non-endoreduplicating human cytotrophoblast cells.  相似文献   

16.
17.
Proteolytic destruction of many cyclins is induced by a multi-subunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C). In the budding yeast Saccharomyces cerevisiae, the S phase cyclin Clb5 and the mitotic cyclins Clb1-4 are known as substrates of this complex. The relevance of APC/C in proteolysis of Clb5 is still under debate. Importantly, a deletion of the Clb5 destruction box has little influence on cell cycle progression. To understand Clb5 degradation in more detail, we applied in vivo pulse labeling to determine the half-life of Clb5 at different cell cycle stages and in the presence or absence of APC/C activity. Clb5 is significantly unstable, with a half-life of approximately 8-10 min, at cell cycle periods when APC/C is inactive and in mutants impaired in APC/C function. A Clb5 version lacking its cyclin destruction box is similarly unstable. The half-life of Clb5 is further decreased in a destruction box-dependent manner to 3-5 min in mitotic or G(1) cells with active APC/C. Clb5 instability is highly dependent on the function of the proteasome. We conclude that Clb5 proteolysis involves two different modes for targeting of Clb5 to the proteasome, an APC/C-dependent and an APC/C-independent mechanism. These different modes apparently have overlapping functions in restricting Clb5 levels in a normal cell cycle, but APC/C function is essential in the presence of abnormally high Clb5 levels.  相似文献   

18.
The adenomatous polyposis coli (APC) tumor suppressor traffics between nucleus and cytoplasm to perform distinct functions. Here we identify a specific role for APC in the DNA replication stress response. The silencing of APC caused an accumulation of asynchronous cells in early S phase and delayed S phase progression in cells released from hydroxyurea-mediated replication arrest. Immunoprecipitation assays revealed a selective binding of APC to replication protein A 32kDa subunit (RPA32), and the APC-RPA32 complex increased at chromatin after hydroxyurea treatment. Interestingly, APC knock-down prevented accumulation at chromatin of the stress-induced S33- and S29-phosphorylated forms of RPA32, and reduced the expression of ATR-phosphorylated forms of S317-phospho-Chk1 and γ-H2AX. Using RPA32-inducible cells we showed that reconstitution of RPA32 diminished the S-phase delay caused by loss of APC. In contrast to full-length APC, the truncated APC mutant protein expressed in SW480 colon cancer cells was impaired in its binding and regulation of RPA32, and failed to regulate cell cycle after replication stress. We propose that APC associates with RPA at stalled DNA replication forks and promotes the ATR-dependent phosphorylation of RPA32, Chk1 and γ-H2AX in response to DNA replication stress, thereby influencing the rate of re-entry into the cell cycle.  相似文献   

19.
20.
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号