首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray structure of monomeric N-methyltryptophan oxidase from Escherichia coli (MTOX) has been solved at 3.2 A resolution by molecular replacement methods using Bacillus sp. sarcosine oxidase structure (MSOX, 43% sequence identity) as search model. The analysis of the substrate binding site highlights the structural determinants that favour the accommodation of the bulky N-methyltryptophan residue in MTOX. In fact, although the nature and geometry of the catalytic residues within the first contact shell of the FAD moiety appear to be virtually superposable in MTOX and MSOX, the presence of a Thr residue in position 239 in MTOX (Met245 in MSOX) located at the entrance of the active site appears to play a key role for the recognition of the amino acid substrate side chain. Accordingly, a 15 fold increase in k(cat) and 100 fold decrease in K(m) for sarcosine as substrate has been achieved in MTOX upon T239M mutation, with a concomitant three-fold decrease in activity towards N-methyltryptophan. These data provide clear evidence for the presence of a catalytic core, common to the members of the methylaminoacid oxidase subfamily, and of a side chain recognition pocket, located at the entrance of the active site, that can be adjusted to host diverse aminoacids in the different enzyme species. The site involved in the covalent attachment of flavin has also been addressed by screening degenerate mutants in the relevant positions around Cys308-FAD linkage. Lys341 appears to be the key residue involved in flavin incorporation and covalent linkage.  相似文献   

2.
gammaS-crystallin is a major human lens protein found in the outer region of the eye lens, where the refractive index is low. Because crystallins are not renewed they acquire post-translational modifications that may perturb stability and solubility. In common with other members of the betagamma-crystallin superfamily, gammaS-crystallin comprises two similar beta-sheet domains. The crystal structure of the C-terminal domain of human gammaS-crystallin has been solved at 2.4 A resolution. The structure shows that in the in vitro expressed protein, the buried cysteines remain reduced. The backbone conformation of the "tyrosine corner" differs from that of other betagamma-crystallins because of deviation from the consensus sequence. The two C-terminal domains in the asymmetric unit are organized about a slightly distorted 2-fold axis to form a dimer with similar geometry to full-length two-domain family members. Two glutamines found in lattice contacts may be important for short range interactions in the lens. An asparagine known to be deamidated in human cataract is located in a highly ordered structural region.  相似文献   

3.
Inorganic long-chain polyphosphate is a ubiquitous linear polymer in biology, consisting of many phosphate moieties linked by phosphoanhydride bonds. It is synthesized by polyphosphate kinase, and metabolised by a number of enzymes, including exo- and endopolyphosphatases. The Saccharomyces cerevisiae gene PPX1 encodes for a 45 kDa, metal-dependent, cytosolic exopolyphosphatase that processively cleaves the terminal phosphate group from the polyphosphate chain, until inorganic pyrophosphate is all that remains. PPX1 belongs to the DHH family of phosphoesterases, which includes: family-2 inorganic pyrophosphatases, found in Gram-positive bacteria; prune, a cyclic AMPase; and RecJ, a single-stranded DNA exonuclease. We describe the high-resolution X-ray structures of yeast PPX1, solved using the multiple isomorphous replacement with anomalous scattering (MIRAS) technique, and its complexes with phosphate (1.6 A), sulphate (1.8 A) and ATP (1.9 A). Yeast PPX1 folds into two domains, and the structures reveal a strong similarity to the family-2 inorganic pyrophosphatases, particularly in the active-site region. A large, extended channel formed at the interface of the N and C-terminal domains is lined with positively charged amino acids and represents a conduit for polyphosphate and the site of phosphate hydrolysis. Structural comparisons with the inorganic pyrophosphatases and analysis of the ligand-bound complexes lead us to propose a hydrolysis mechanism. Finally, we discuss a structural basis for substrate selectivity and processivity.  相似文献   

4.
Tang WK  Wong KB  Lam YM  Cha SS  Cheng CH  Fong WP 《FEBS letters》2008,582(20):3090-3096
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.  相似文献   

5.
Cystathionine gamma-synthase catalyses the committed step of de novo methionine biosynthesis in micro-organisms and plants, making the enzyme an attractive target for the design of new antibiotics and herbicides. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum has been solved by Patterson search techniques using the structure of Escherichia coli cystathionine gamma-synthase. The model was refined at 2.9 A resolution to a crystallographic R -factor of 20.1 % (Rfree25.0 %). The physiological substrates of the enzyme, L-homoserine phosphate and L-cysteine, were modelled into the unliganded structure. These complexes support the proposed ping-pong mechanism for catalysis and illustrate the dissimilar substrate specificities of bacterial and plant cystathionine gamma-synthases on a molecular level. The main difference arises from the binding modes of the distal substrate groups (O -acetyl/succinyl versusO -phosphate). Central in fixing the distal phosphate of the plant CGS substrate is an exposed lysine residue that is strictly conserved in plant cystathionine gamma-synthases whereas bacterial enzymes carry a glycine residue at this position. General insight regarding the reaction specificity of transsulphuration enzymes is gained by the comparison to cystathionine beta-lyase from E. coli, indicating the mechanistic importance of a second substrate binding site for L-cysteine which leads to different chemical reaction types.  相似文献   

6.
Deinococcus radiodurans is extremely resistant to the effects of ionizing radiation. The source of the radiation resistance is not known, but an expansion of specific protein families related to stress response and damage control has been observed. DNA repair enzymes are among the expanded protein families in D. radiodurans, and genes encoding five different uracil-DNA glycosylases are identified in the genome. Here we report the three-dimensional structure of the mismatch-specific uracil-DNA glycosylase (MUG) from D. radiodurans (drMUG) to a resolution of 1.75 angstroms. Structural analyses suggest that drMUG possesses a novel catalytic residue, Asp-93. Activity measurements show that drMUG has a modified and broadened substrate specificity compared with Escherichia coli MUG. The importance of Asp-93 for activity was confirmed by structural analysis and abolished activity for the mutant drMUGD93A. Two other microorganisms, Bradyrhizobium japonicum and Rhodopseudomonas palustris, possess genes that encode MUGs with the highest sequence identity to drMUG among all of the bacterial MUGs examined. A phylogenetic analysis indicates that these three MUGs form a new MUG/thymidine-DNA glycosylase subfamily, here called the MUG2 family. We suggest that the novel catalytic residue (Asp-93) has evolved to provide drMUG with broad substrate specificity to increase the DNA repair repertoire of D. radiodurans.  相似文献   

7.
8.
The 26S proteasome is a large protein complex involved in protein degradation. We have shown previously that the PSMD7/Mov34 subunit of the human proteasome contains a proteolytically resistant MPN domain. MPN domain family members comprise subunits of the proteasome, COP9-signalosome and translation initiation factor 3 complexes. Here, the crystal structure of two C-terminally truncated proteins, MPN 1-186 and MPN 1-177, were solved to 1.96 and 3.0 A resolution, respectively. MPN 1-186 is formed by nine beta-strands surrounded by three alpha-helices plus a fourth alpha-helix at the C terminus. This final alpha-helix emerges from the domain core and folds along with a symmetrically related subunit, typical of a domain swap. The crystallographic dimer is consistent with size-exclusion chromatography and DLS analysis showing that MPN 1-186 is a dimer in solution. MPN 1-186 shows an overall architecture highly similar to the previously reported crystal structure of the Archaeal MPN domain AfJAMM of Archaeoglobus fulgidus. However, previous structural and biophysical analyses have shown that neither MPN 1-186 nor full-length human Mov34 bind metal, in opposition to the zinc-binding AfJAMM structures. The zinc ligand residues observed in AfJAMM are conserved in the yeast Rpn11 proteasome and Csn5 COP-signalosome subunits, which is consistent with the isopeptidase activity described for these proteins. The results presented here show that, although the MPN domain of Mov34 shows a typical metalloprotease fold, it is unable to coordinate a metal ion. This finding and amino acid sequence comparisons can explain why the MPN-containing proteins Mov34/PSMD7, RPN8, Csn6, Prp8p and the translation initiation factor 3 subunits f and h do not show catalytic isopeptidase activity, allowing us to propose the hypothesis that in these proteins the MPN domain has a primarily structural function.  相似文献   

9.
Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structure of the coiled-coil domain of the channel enzyme TRPM7. The crystal structure, together with biochemical experiments, reveals an unexpected four-stranded antiparallel coiled-coil architecture that bears unique features relative to other antiparallel coiled-coils. Structural analysis indicates that a limited set of interactions encode assembly specificity determinants and uncovers a previously unnoticed segregation of TRPM assembly domains into two families that correspond with the phylogenetic divisions seen for the complete subunits. Together, the data provide a framework for understanding the mechanism of TRPM channel assembly and highlight the diversity of forms found in the coiled-coil fold.  相似文献   

10.
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.  相似文献   

11.
The individual zinc endoproteinases of the tissue degrading matrix metalloproteinase (MMP) family share a common catalytic architecture but are differentiated with respect to substrate specificity, localization, and activation. Variation in domain structure and more subtle structural differences control their characteristic specificity profiles for substrates from among four distinct classes (Nagase, H., and Woessner, J. F. J. (1999) J. Biol. Chem. 274, 21491-21494). Exploitation of these differences may be decisive for the design of anticancer or other drugs, which should be highly selective for their particular MMP targets. Based on the 1.8-A crystal structure of human neutrophil collagenase (MMP-8) in complex with an active site-directed inhibitor (RO200-1770), we identify and describe new structural determinants for substrate and inhibitor recognition in addition to the primary substrate recognition sites. RO200-1770 induces a major rearrangement at a position relevant to substrate recognition near the MMP-8 active site (Ala206-Asn218). In stromelysin (MMP-3), competing stabilizing interactions at the analogous segment hinder a similar rearrangement, consistent with kinetic profiling of several MMPs. Despite the apparent dissimilarity of the inhibitors, the central 2-hydroxypyrimidine-4,6-dione (barbiturate) ring of the inhibitor RO200-1770 mimics the interactions of the hydroxamate-derived inhibitor batimastat (Grams, F., Reinemer, P., Powers, J. C., Kleine, T., Pieper, M., Tschesche, H., Huber, R., and Bode, W. (1995) Eur. J. Biochem. 228, 830-841) for binding to MMP-8. The two additional phenyl and piperidyl ring substituents of the inhibitor bind into the S1' and S2' pockets of MMP-8, respectively. The crystal lattice contains a hydrogen bond between the O(gamma) group of Ser209 and N(delta)1 of His207 of a symmetry related molecule; this interaction suggests a model for recognition of hydroxyprolines present in physiological substrates. We also identify a collagenase-characteristic cis-peptide bond, Asn188-Tyr189, on a loop essential for collagenolytic activity. The sequence conservation pattern at this position marks this cis-peptide bond as a determinant for triple-helical collagen recognition and processing.  相似文献   

12.
The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38‐alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain.  相似文献   

13.
CCR4, an evolutionarily conserved member of the CCR4–NOT complex, is the main cytoplasmic deadenylase. It contains a C‐terminal nuclease domain with homology to the endonuclease‐exonuclease‐phosphatase (EEP) family of enzymes. We have determined the high‐resolution three‐dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X‐ray crystallography using the single‐wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete α/β sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg2+‐dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition.  相似文献   

14.
The high energy sulfate donor 3'-phosphoadenosine-5-phosphosulfate (PAPS) is used for sulfate conjugation of extracellular matrix, hormones and drugs. Human PAPS synthetase 1 catalyzes two subsequent reactions starting from ATP and sulfate. First the ATP sulfurylase domain forms APS, then the APS kinase domain phosphorylates the APS intermediate to PAPS. Up to now the interaction between the two enzymatic activities remained elusive, mainly because of missing structural information. Here we present the crystal structure of human PAPSS1 at 1.8 angstroms resolution. The structure reveals a homodimeric, asymmetric complex with the shape of a chair. The two kinase domains adopt different conformational states, with only one being able to bind its two substrates. The asymmetric binding of ADP to the APS kinase is not only observed in the crystal structure, but can also be detected in solution, using an enzymatic assay. These observations strongly indicate structural changes during the reaction cycle. Furthermore crystals soaked with ADP and APS could be prepared and the corresponding structures could be solved.  相似文献   

15.

Background

Soluble guanylate cyclases generate cyclic GMP when bound to nitric oxide, thereby linking nitric oxide levels to the control of processes such as vascular homeostasis and neurotransmission. The guanylate cyclase catalytic module, for which no structure has been determined at present, is a class III nucleotide cyclase domain that is also found in mammalian membrane-bound guanylate and adenylate cyclases.

Results

We have determined the crystal structure of the catalytic domain of a soluble guanylate cyclase from the green algae Chlamydomonas reinhardtii at 2.55 Å resolution, and show that it is a dimeric molecule.

Conclusion

Comparison of the structure of the guanylate cyclase domain with the known structures of adenylate cyclases confirms the close similarity in architecture between these two enzymes, as expected from their sequence similarity. The comparison also suggests that the crystallized guanylate cyclase is in an inactive conformation, and the structure provides indications as to how activation might occur. We demonstrate that the two active sites in the dimer exhibit positive cooperativity, with a Hill coefficient of ~1.5. Positive cooperativity has also been observed in the homodimeric mammalian membrane-bound guanylate cyclases. The structure described here provides a reliable model for functional analysis of mammalian guanylate cyclases, which are closely related in sequence.  相似文献   

16.
The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the intracellular regions of Toll-like receptors (TLRs), in interleukin-1 receptors, and in several cytoplasmic adaptor proteins. TIR domains mediate receptor signal transduction through recruitment of adaptor proteins and play critical roles in the innate immune response and inflammation. This work presents the 2.2A crystal structure of the TIR domain of human TLR10, revealing a symmetric dimer in the asymmetric unit. The dimer interaction surface contains residues from the BB-loop, DD-loop, and alphaC-helix, which have previously been identified as important structural motifs for signaling in homologous TLR receptors. The interaction surface is extensive, containing a central hydrophobic patch surrounded by polar residues. The BB-loop forms a tight interaction, where a range of consecutive residues binds in a pocket formed by the reciprocal BB-loop and alphaC-helix. This pocket appears to be well suited for binding peptide substrates, which is consistent with the notion that peptides and peptide mimetics of the BB-loop are inhibitors for TLR signaling. The TLR10 structure is in good agreement with available biochemical data on TLR receptors and is likely to provide a good model for the physiological dimer.  相似文献   

17.
Cutinase from Fusarium solani is a lipolytic enzyme that hydrolyses triglycerides efficiently. All the inhibited forms of lipolytic enzymes described so far are based on the use of small organophosphate and organophosphonate inhibitors, which bear little resemblance to a natural triglyceride substrate. In this article we describe the crystal structure of cutinase covalently inhibited by (R)-1,2-dibutyl-carbamoylglycero-3-O-p-nitrophenylbutyl-phos phonate, a triglyceride analogue mimicking the first tetrahedral intermediate along the reaction pathway. The structure, which has been solved at 2.3 A, reveals that in both the protein molecules of the asymmetric unit the inhibitor is almost completely embedded in the active site crevice. The overall shape of the inhibitor is that of a fork: the two dibutyl-carbamoyl chains point towards the surface of the protein, whereas the butyl chain bound to the phosphorous atom is roughly perpendicular to the sn-1 and sn-2 chains. The sn-3 chain is accommodated in a rather small pocket at the bottom of the active site crevice, thus providing a structural explanation for the preference of cutinase for short acyl chain substrates.  相似文献   

18.
Recombinant human interstitial collagenase, an N-terminal truncated form, delta 243-450 collagenase, recombinant human stromelysin-1, and an N-terminal truncated form, delta 248-460 stromelysin, have been stably expressed in myeloma cells and purified. The truncated enzymes were similar in properties to their wild-type counterparts with respect to activation requirements and the ability to degrade casein, gelatin, and a peptide substrate, but truncated collagenase failed to cleave native collagen. Removal of the C-terminal domain from collagenase also modified its interaction with tissue inhibitor of metalloproteinases-1. Hybrid enzymes consisting of N-terminal (1-242) collagenase.C-terminal (248-460) stromelysin and N-terminal (1-233) stromelysin.C-terminal (229-450) collagenase, representing an exchange of the complete catalytic and C-terminal domains of the two enzymes, were expressed in a transient system using Chinese hamster ovary cells and purified. Both proteins showed similar activity to their N-terminal parent and neither was able to degrade collagen. Analysis of the ability of the different forms of recombinant enzyme to bind to collagen by ELISA showed that both pro and active stromelysin and N-terminal collagenase.C-terminal stromelysin bound to collagen equally well. In contrast, only the active forms of collagenase and N-terminal stromelysin.C-terminal collagenase bound well to collagen, as compared with their pro forms.  相似文献   

19.
The three-dimensional (3D) structure of fructan biosynthetic enzymes is still unknown. Here, we have explored folding similarities between reported microbial and plant enzymes that catalyze transfructosylation reactions. A sequence-structure compatibility search using TOPITS, SDP, 3D-PSSM, and SAM-T98 programs identified a beta-propeller fold with scores above the confidence threshold that indicate a structurally conserved catalytic domain in fructosyltransferases (FTFs) of diverse origin and substrate specificity. The predicted fold appeared related to that of neuraminidase and sialidase, of glycoside hydrolase families 33 and 34, respectively. The most reliable structural model was obtained using the crystal structure of neuraminidase (Protein Data Bank file: 5nn9) as template, and it is consistent with the location of previously identified functional residues of bacterial levansucrases (Batista et al., 1999; Song & Jacques, 1999). The sequence-sequence analysis presented here reinforces the recent inclusion of fungal and plant FTFs into glycoside hydrolase family 32, and suggests a modified sequence pattern H-x (2)-[PTV]-x (4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3 for this family.  相似文献   

20.
Rhomboids are intramembrane proteases that use a catalytic dyad of serine and histidine for proteolysis. They are conserved in both prokaryotes and eukaryotes and regulate cellular processes as diverse as intercellular signalling, parasitic invasion of host cells, and mitochondrial morphology. Their widespread biological significance and consequent medical potential provides a strong incentive to understand the mechanism of these unusual enzymes for identification of specific inhibitors. In this study, we describe the structure of Escherichia coli rhomboid GlpG covalently bound to a mechanism‐based isocoumarin inhibitor. We identify the position of the oxyanion hole, and the S1‐ and S2′‐binding subsites of GlpG, which are the key determinants of substrate specificity. The inhibitor‐bound structure suggests that subtle structural change is sufficient for catalysis, as opposed to large changes proposed from previous structures of unliganded GlpG. Using bound inhibitor as a template, we present a model for substrate binding at the active site and biochemically test its validity. This study provides a foundation for a structural explanation of rhomboid specificity and mechanism, and for inhibitor design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号