首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the penetration mechanisms of carbon nanotube (CNTs)-encapsulated drugs through the phospholipid bilayer cell membrane is an important issue for the development of intracellular drug delivery systems. In the present work, steered molecular dynamics (SMD) simulation was used to explore the possibility of penetration of a polar drug, paclitaxel (PTX), encapsulated inside the CNT, through a dipalmitoylphosphatidylcholine bilayer membrane. The interactions between PTX and CNT and between PTX and the confined water molecules inside the CNT had a significant effect on the penetration process of PTX. The results reveal that the presence of a PTX molecule increases the magnitude of the pulling force. The effect of pulling velocity on the penetration mechanism was also investigated by a series of SMD simulations, and it is shown that the pulling velocity had a significant effect on pulling force and the interaction between lipid bilayer and drug molecule.  相似文献   

2.
The increase, followed by culmination and decrease, of biological activity often observed within a homologous series of toxic compounds has previously been explained by assuming that their rate of movement between the lipid cell membrane and the aqueous protoplasm passes through an optimum as the partition coefficients increase progressively. In contrast to this, it has been claimed that direct measurements of the penetration rate of compounds through individual Nitella cells show tbat penetration rates are proportional to partition coefficients. In this attempt to investigate these two opposed hypotheses an analysis of published penetration rate data, obtained with Nitella, showed that the direct penetration measurements were best described by an equation which included a quadratic function of partition coefficient. There is, therefore, no inconsistency between the measurements of penetration by biological activity and by direct measurement. The compounds used in the latter procedure were all relatively hydrophilic and although a maximum rate of penetration was observed tbere was no indication of a subsequent decrease as there were no compounds with high partition coefficients. The correlation of penetration with other physical properties of the compounds is discussed.  相似文献   

3.
During intoxication of a cell, the translocation (T) domain of the diphtheria toxin helps the passage of the catalytic domain across the membrane of the endosome into the cytoplasm. We have investigated the behavior of the N-terminal region of the T domain during the successive steps of its interaction with membranes at acidic pH using tryptophan fluorescence, its quenching by brominated lipids, and trypsin digestion. The change in the environment of this region was monitored using mutant W281F carrying a single native tryptophan at position 206 at the tip of helix TH1. The intrinsic propensity to interact with the membrane of each helix of the N-terminus of the T domain, TH1, TH2, TH3, and TH4, was also studied using synthetic peptides. We showed the N-terminal region of the T domain was not involved in the binding of the domain to the membrane, which occurred at pH 6 mainly through hydrophobic effects. At that stage of the interaction, the N-terminal region remained strongly solvated. Further acidification eliminated repulsive electrostatic interactions between this region and the membrane, allowing its penetration into the membrane by attractive electrostatic interactions and hydrophobic effects. The peptide study indicated the nature of forces contributing to membrane penetration. Overall, the data suggested that the acidic pH found in the endosome not only triggers the formation of the molten globule state of the T domain required for membrane interaction but also governs a progressive penetration of the N-terminal part of the T domain in the membrane. We propose that these physicochemical properties are necessary for the translocation of the catalytic domain.  相似文献   

4.
On the entry of semliki forest virus into BHK-21 cells   总被引:69,自引:39,他引:69       下载免费PDF全文
The pathway by which semliki forest virus (SFV), a membrane-containing animal virus, enters BHK-21 cells was studied morphologically and biochemically. After attaching to the cell surface, the majority of viruses was rapidly trapped into coated pits, internalized by endocytosis in coated vesicles, and sequestered into intracellular vacuoles and lysosomes. Direct penetration of viruses through the plasma membrane was never observed. To assess the possible involvement of lysosomes in the release of the genome into the cytoplasm, the effect of five lysosomotropic agents, known to increase the lysosomal pH, was tested. All of these agents inhibited SFV infectivity and one, chloroquine (the agent studied in most detail), inhibited a very early step in the infection but had no effect on binding, endocytosis, or intracellular distribution of SFV. Thus, the inhibitory effect was concluded to be either on penetration of the nucelocapsid into the cytoplasm or on uncoating of the viral RNA. Possible mechanisms for the penetration of the genome into the cytoplasm were studied in vitro, using phospholipids-cholesterol liposomes and isolated SFV. When the pH was 6.0 or lower, efficient fusion of the viral membranes and the liposomal membranes occurred, resulting in the transfer of the nucleocapsid into the liposomes. Infection of cells could also be induced by brief low pH treatment of cells with bound SFV under conditions where the normal infection route was blocked. The results suggest that the penetration of the viral genome into the cytosol takes place intracellularly through fusion between the limiting membrane of intracellular vacuoles and the membrane of viruses contained within them. The low pH required for fusion together with the inhibitory effect of lysosomotropic agents implicate lysosomes, or other intracellular vacuoles with sufficiently low pH, as the main sites of penetration.  相似文献   

5.
In this study, a peptide–peptide co-administration therapy between hybrid peptide kla-TAT and cationic anticancer peptide HPRP-A1 was designed to increase the anticancer activity of the combination peptides through synergistic effect. kla is a pro-apoptotic peptide which could induce rapid cancer cell apoptosis by disruption the mitochondrial membrane when internalized the cells. To enhance more kla peptides pass through cell membrane, a double improvement strategy was designed by chemically conjugation with cell penetration peptide TAT as well as co-administration with cationic membrane active peptide HPRP-A1, and the double anticancer mechanism of the kla-TAT peptide and HPRP-A1 including membrane disruption and apoptosis induction was verified through in vitro experiments. The CompuSyn synergism/antagonism analysis showed that kla-TAT acted synergistically with HPRP-A1 against a non-small cell lung cancer (NSCLC) A549 cell line. The anticancer activities of the two peptides were dramatically increased by co-administration, under the mechanism of cell membrane disruption, caspase-dependent apoptosis induction, as well as cyclin-D1 down-regulation based G1 phase arrest. We believe that the synergic therapeutic strategy would be a meaningful method for the anticancer peptides used in cancer treatment.  相似文献   

6.
Abstract The influence of various outer membrane proteins on peptide penetration through the outer membrane in Escherichia coli was assessed by determining peptide transport kinetics in wild type and outer membrane protein-deficient strains. Peptide uptake was measured in whole cells by using a fluorescamine-based assay to monitor continuously the removal of peptides from the medium. Transport data were collected and processed using a microcomputer to give overall K m and V max values for peptide transport in each strain. In the mutants, K m values were changed more markedly then V max values reflecting an alteration in diffusion through the envelope. This approach shows that porins are involved in facilitating peptide penetration and that the OmpF channel appears to be more important than either OmpC or PhoE proteins. The loss of OmpA protein also decreases outer membrane permeability towards peptides, although whether this protein forms pores itself or exists more to maintain the functional integrity of other proteins is not known.  相似文献   

7.
Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer’s disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.  相似文献   

8.
We examined the effects of synthetic signal peptides from the wild-type, export-defective mutant and its revertant species of ribose-binding protein on the phase properties of lipid bilayers. The lateral segregation of phosphatidylglycerol (PG) in the lipid bilayer was detected through quenching between NBD-PGs upon the reconstitution of signal peptide into the liposome made with the Escherichia coli inner membrane composition. The tendency of lipid segregation was highly dependent on the export competency of signal peptides in vivo, with a decreasing order of wild-type, revertant, and mutant species. The colocalizations of pyrene-PG with BODIPY-PG were also induced by the signal peptides, confirming the phase separation of the acidic phospholipid. The wild-type and revertant signal peptides predominantly formed alpha-helical conformations with the presence of acidic phospholipid as determined by circular dichroism spectroscopy. In addition, they restricted the motion of lipid acyl chains as monitored by fluorescence anisotropy of DPH, suggesting a deep penetration of signal peptide into the lipid bilayer. However, the alpha-helical content of mutant signal peptide was only about half that of the wild-type or revertant peptide with a significantly smaller degree of penetration into the bilayer. An association of the defective signal peptides into the membrane was affected by salt extraction, whereas the functional ones were not. The aforementioned results indicate that the functionality of signal peptide is accomplished through its topologies in the membrane and also by its ability to induce lateral segregation of acidic phospholipid. We propose that the clustering of acidic phospholipid by the functional signal peptide is responsible for the formation of non-bilayer membrane structure, thereby promoting an efficient translocation of secretory proteins.  相似文献   

9.
The permeability of artificial lipid membranes for six enzymes, e.g. RNAse, trypsin, amylase, aldolase, invertase and alkaline phosphatase, was studied. The permeability coefficient values for these enzymes were calculated. It was shown that the penetration process consists of several steps: adsorption of enzyme on the membrane surface, diffusion of enzyme molecules through the lipid layer and enzyme desorption into the surrounding solution. The results obtained suggest that the diffusion of the enzyme molecules through the lipid layer is the limiting step of the penetration process.  相似文献   

10.
The ratio of surface and intracellular serotonin binding by the cells of immunocompetent tissues and synaptosomes of immunized and intact CBA mice was studied by treatment with imipramine inhibiting serotonin penetration through the cytoplasmic membrane. As early as 5 minutes after the antigen injection the content of intracellular amine increased with changes in its binding by the cytoplasmic membrane. The probability of the functional interconnection between the reaction of immunocompetent tissues to the antigen and two forms of serotonin binding by the cells of these tissues is discussed.  相似文献   

11.
The Journey of Malaria Sporozoites in the Mosquito Salivary Gland   总被引:11,自引:0,他引:11  
The life cycle of malaria parasites in the mosquito vector is completed when the sporozoites infect the salivary gland and are ready to be injected into the vertebrate host. This paper describes the fine structure of the invasive process of mosquito salivary glands by malaria parasites. Plasmodium gallinaceum sporozoites start the invasion process by attaching to and crossing the basal lamina and then penetrating the host plasma membrane of the salivary cells. The penetration process appears to involve the formation of membrane junctions. Once inside the host cells, the sporozoites are seen within vacuoles attached by their anterior end to the vacuolar membrane. Mitochondria surround, and are closely associated with, the invading sporozoites. After the disruption of the membrane vacuole, the parasites traverse the cytoplasm, attach to, and invade the secretory cavity through the apical plasma membrane of the cells. Inside the secretory cavity, sporozoites are seen again inside vacuoles. Upon escaping from these vacuoles, sporozoites are positioned in parallel arrays forming large bundles attached by multilammelar membrane junctions. Several sporozoites are seen around and inside the secretory duct. Except for the penetration of the chitinous salivary duct, our observations have morphologically characterized the entire process of sporozoite passage through the salivary gland.  相似文献   

12.
The progressive stages in Bdellovibrio bacteriovorus penetration into two strains of Escherichia coli were examined by use of electron microscopic techniques. The initial change observed in the ultrastructure of the host following parasitic attack was the swelling of the cell envelope at the site of attachment. The Bdellovibrio then appeared to pierce the center of this swelling, forming a pore in the outer wall layers of the host. The edges of this entry pore constricted the Bdellovibrio throughout its penetration into the host cell. Although partial disruption of the cytoplasmic membrane was always apparent, the parasite did not appear to actively penetrate through this barrier. An attempt is made to correlate the fine structural changes involved in penetration with the physiological data that have accumulated to date.  相似文献   

13.
Mechanical responses during insertion of a silicon nanoneedle into a living melanocyte were observed by using an atomic force microscope (AFM). In order to study the dependence of the mechanical response on the shape of the nanoneedle, we prepared various shapes of silicon AFM tips by focused-ion beam (FIB) etching. The force curves showed increases up to 0.65-1.9 nN after contact on the cell surface, and then the force dropped corresponding with the penetration of the needle through the cell membrane. The force required for penetration was significantly smaller than that using a normal pyramidal tip. The force curves with a cylindrical tip showed a shorter indenting distance before penetration than that with the cone-shaped tip. It is considered that the information about the geometry of penetrating material leads to the development of more suitable micro- and nano-materials to insert into a living cell for cell surgery.  相似文献   

14.
When Triton X-100/EDTA extracts of the outer membrane of Escherichia coli K12 were passed through a column containing maltose-binding protein covalently linked to Sepharose 6MB beads, the phage lambda receptor protein or LamB protein was quantitatively and specifically adsorbed to the column and was eluted with a solution containing 1 M NaCl, but not with that containing 0.5 M maltose. The binding did not take place when columns containing inactivated Sepharose beads alone, or Sepharose bound to histidine-binding protein of Salmonella typhimurium, were used. This interaction is consistent with the hypothesis that the periplasmic maltose-binding protein interacts with the part of the LamB protein exposed on the inner surface of the outer membrane, thereby increasing the specificity of the solute penetration process through the LamB channel.  相似文献   

15.
Protectin (CD59) is a complement regulatory protein which blocks the membrane attack complex during complement activation. CD59 was identifield on the human sperm surface by means of H19, an IgG1 anti-protectin mouse monoclonal antibody. Using Indirect immunofluorescence, flow cytometry and immunoperoxidase, CD59 was found to be present on the whole plasma membrane including the head and tail of fresh ejaculated, capacitated and acrosome-reacted spermatozoa. Immunoperoxidase staining of normal testicular sections indicated that this protein was already present on intraluminal germ cells. Analysis of this sperm protein by gel electrophoresis and immunoblotting revealed that its molecular weight of 20 kDa was comparable to that of CD59 expressed on peripheral blood cells (erythrocytes, lymphocytes) and that it was bound to the membrane through a glycophospholipid tail which could be released after treatment with phosphatidylinositol-specific phospholipase C. Associated to membrane cofactor protein (CD46) and decay accelerating factor (CD55) located in the acrosomal membranes, CD59 may participate to the protection of male gametes against complement-mediated damage as they travel through the female genital tract. Moreover CD59, known as an adhesion molecule involved in lymphocyte rosettes, may also participate in cell to cell adhesion during gametic interaction since H19 inhibited sperm binding and reduced the penetration rate and index during the hamster egg penetration test. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Summary The breakdown of erythrocytes within the lysosomal apparatus of trophoblastic epithelial cells of the sheep placenta was studied at the ultrastructural level. Acid phosphatase activity could be demonstrated in the interspace between the erythrocyte membrane and the lysosomal membrane, but not inside ingested erythrocytes. The erythrocyte plasma membrane remained observable until the final stage of the breakdown process. Together with a peripheral layer of indigestible hemoglobin it might form a barrier for further penetration of lysosomal enzymes into the ingested erythrocyte. The hemoglobin of the erythrocyte is suggested to diffuse through the erythrocyte plasma membrane into the interspace between this membrane and the lysosomal membrane. Subsequently, the hemoglobin is digested in the interspace or in fragments pinched off from erythrocyte-containing lysosomes (=erythrolysosomes). The fragmentation of erythrolysosomes is considered to be the most efficient mechanism for the breakdown of red blood cells in the trophoblastic epithelium of the sheep placenta. The method of entry of hydrolytic enzymes into erythrocyte-containing phagosomes is discussed.  相似文献   

17.

Background

Multi-drug resistant (MDR) bacteria have become a major concern in hospitals worldwide and urgently require the development of new antibacterial molecules. Peptide deformylase is an intracellular target now well-recognized for the design of new antibiotics. The bacterial susceptibility to such a cytoplasmic target primarily depends on the capacity of the compound to reach and accumulate in the cytosol.

Methodology/Principal Findings

To determine the respective involvement of penetration (influx) and pumping out (efflux) mechanisms to peptide deformylase inhibitors (PDF-I) activity, the potency of various series was determined using various genetic contexts (efflux overproducers or efflux-deleted strains) and membrane permeabilizers. Depending on the structure of the tested molecules, two behaviors could be observed: (i) for actinonin the first PDF-I characterized, the AcrAB efflux system was the main parameter involved in the bacterial susceptibility, and (ii), for the lastest PDF-Is such as the derivatives of 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide, the penetration through the membrane was a important limiting step.

Conclusions/Significance

Our results clearly show that the bacterial membrane plays a key role in modulating the antibacterial activity of PDF-Is. The bacterial susceptibility for these new antibacterial molecules can be improved by two unrelated ways in MDR strains: by collapsing the Acr efflux activity or by increasing the uptake rate through the bacterial membrane. The efficiency of the second method is associated with the nature of the compound.  相似文献   

18.
The ultrastructure of sperm changes and penetration in the egg was studied in the anuran Discoglossus pictus, whose sperm have an acrosome cap with a typical tip, the apical rod. The first stage of the sperm apical rod and acrosome reaction (AR) consists in vesiculation between the plasma membrane and the outer acrosome membrane. The two components of the acrosome cap are released in sequence. The innermost component (component B) is dispersed first. The next acrosome change is the dispersal of the outermost acrosome content (component A). At 30 sec postinsemination, when the loss of component B is first observed, holes are seen in the innermost jelly coat (J1), surrounding the penetrating sperm. Therefore, this acrosome constituent might be related to penetration through the innermost egg investments. At 1 min postinsemination, during sperm penetration into the egg, a halo of finely granular material is observed around the inner acrosome membrane of the spermatozoon, suggesting a role for component A at this stage of penetration. Gamete-binding and fusion take place between D1 (the egg-specific site for sperm interaction) and the perpendicularly oriented sperm. Spermatozoa visualized at their initial interaction (15 sec postinsemination) with the oolemma are undergoing vesiculation. The first interaction is likely to occur between the D1 glycocalyx and the plasma membrane of the hybrid vesicles surrounding the apical rod. As fusion is observed between the internal acrosome membrane and the oolemma, it can be postulated that gametic interaction might be followed by fusion of the latter with the apical rod internal membrane that extends posteriorly into the inner acrosome membrane. Insemination of the outermost jelly layer (J3) dissected out of the egg, and observations of the ultrastructural changes of spermatozoa in this coat, indicate that J3 rather than the vitelline coat (VC) induces the AR. Interestingly, at the late postinsemination stage, VC fibrils are seen crosslinking the inner acrosome membrane. The role of this binding is here discussed. Mol. Reprod. Dev. 47:323–333, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at?the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear. Combining equilibrium and nonequilibrium molecular dynamics (MD) simulations, NMR spectroscopy, and monolayer penetration experiments, we characterize the membrane-associated state of?GRP1-PH. MD simulations show loops flanking the binding site supplement the interaction with PI(3,4,5)P(3) through multiple contacts with the lipid bilayer. NMR data show large perturbations in chemical shift for these loop regions on binding to PI(3,4,5)P(3)-containing DPC micelles. Monolayer penetration experiments and further MD simulations demonstrate that mutating hydrophobic residues to polar residues in the flanking loops reduces membrane penetration. This supports a "dual-recognition" model of binding, with specific GRP1-PH-PI(3,4,5)P(3) interactions supplemented by interactions of loop regions with the lipid bilayer.  相似文献   

20.
Oxygen and air low-temperature plasma treatment leads to significant changes in fibre cuticle cell membrane (skin flakes). Both lipids and proteins were destroyed. The processes of intensive lipid oxidation resulted from low-temperature plasma action. This factor seems to change critical surface tension, wetting and increasing penetration of dyes through the cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号