首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slow cortical potentials (SCPs) are considered to reflect the regulation of attention resources and cortical excitability in cortical neuronal networks. Impaired attentional functioning, as found in patients with schizophrenic disorders, may covary with impaired SCP regulation. This hypothesis was tested using a self-regulation paradigm. Twelve medicated male schizophrenic inpatients and 12 healthy male controls received continuous feedback of their SCPs, during intervals of 8 s each, by means of a visual stimulus (a stylized rocket) moving horizontally across a TV screen. The position of the feedback stimulus was a linear function of the integrated SCP at each point in time during the feedback interval. Subjects were required to increase or reduce negative SCPs (referred to pretrial baseline) depending on the presentation of a discriminative stimulus. The correct response was indicated by the amount of forward movement of the feedback stimulus and by monetary rewards. Schizophrenics participated in 20 sessions (each comprising 110 trials), while controls participated in 5 sessions. Compared with the healthy controls, schizophrenics showed no significant differentiation between negativity increase and negativity suppression during the first sessions. However, in the last 3 sessions, patients achieved differentiation similar to controls, demonstrating the acquisition of SCP control after extensive training.  相似文献   

2.
Slow cortical potentials (SCPs) are considered to reflect the regulation of attention resources and cortical excitability in cortical neuronal networks. Impaired attentional functioning, as found in patients with schizophrenic disorders, may covary with impaired SCP regulation. This hypothesis was tested using a self-regulation paradigm. Twelve medicated male schizophrenic inpatients and 12 healthy male controls received continuous feedback of their SCPs, during intervals of 8 s each, by means of a visual stimulus (a stylized rocket) moving horizontally across a TV screen. The position of the feedback stimulus was a linear function of the integrated SCP at each point in time during the feedback interval. Subjects were required to increase or reduce negative SCPs (referred to pretrial baseline) depending on the presentation of a discriminative stimulus. The correct response was indicated by the amount of forward movement of the feedback stimulus and by monetary rewards. Schizophrenics participated in 20 sessions (each comprising 110 trials), while controls participated in 5 sessions. Compared with the healthy controls, schizophrenics showed no significant differentiation between negativity increase and negativity suppression during the first sessions. However, in the last 3 sessions, patients achieved differentiation similar to controls, demonstrating the acquisition of SCP control after extensive training.  相似文献   

3.
Nine healthy children took part in five sessions of feedback and instrumental conditioning of slow cortical potentials (SCPs). The feedback conditions (the relation between the feedback signal and amplitude of SCP) were inverted after two sessions. Neither the children nor the therapists were aware of this change. The adjustment of the children to the new feedback setting and the self-regulation strategies employed were investigated. The results were as follows: (a) Healthy children achieved control over cortical negativity within two sessions. (b) The change of feedback conditions worsened the regulation abilities, which then improved again within the following three sessions. (c) After the first two sessions, the participants were able to describe strategies that were successful during different phases of self-regulation. (d) Following the change in the feedback conditions, the children re-evaluated the way they influenced their SCPs. However, they did not alter the cognitive or behavioral strategies. The study demonstrated that positive and negative reinforcement and the knowledge of results are more important for successful self-regulation than the search for effective strategies. The relevance of these findings is discussed.  相似文献   

4.
Behavioral psychophysiological treatment entailing Slow Cortical Potential (SCP) biofeed-back training and behavioral self-control training was conducted with a 27-year-old male epileptic patient (seizures for 23 years) with Wechsler IQ 64 who underwent callosotomy. The patient had 12/week secondary generalized tonic-clonic seizures. The treatment, consisting of 43 SCP training sessions and 22 behavioral control sessions, yielded a highly significant reduction of seizure frequency to about 7.5/week; such a decrease had never been observed after administration of new anticonvulsant drugs, nor after the callosotomy. During SCP feedback training, the patient was able to produce highly-significant cortical differentiation of SCPs of about 4 µV. In addition, he developed several new behaviors indicating growing ability of self-perception and self-regulation. These findings suggest that a combination of SCP biofeedback with behavioral treatment of epilepsy can be used even in mentally retarded patients with organic brain disorders.  相似文献   

5.
BackgroundInterregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls.MethodsThis was a cross-sectional brain magnetic resonance imaging (MRI) investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified.ResultsA model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two.ConclusionsA model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology.  相似文献   

6.
Slow cortical potential biofeedback and the startle reflex   总被引:4,自引:0,他引:4  
The negativity of slow cortical potentials (SCP) of the surface EEG is a measure of brain excitability, correlating with motor and cognitive preparation. Selfcontrol of SCP positivity has been shown to reduce seizure activity. Following SCP biofeedback from a central EEG electrode position, subjects gained bidirectional control over their SCP. The current study used a modified feedback methodology, and found a positive relationship between negativity and magnitude of EMG startle response (a measure of cortical and subcortical arousal, particularly aversive response disposition). Greater success in SCP differentiation was associated with self-report of less relaxation during negativity training.This research was supported by the Deutsche Forschungsgemeinschaft under grant No. SFB 307.  相似文献   

7.
The present study investigated the effects of biofeedback of arterial blood pressure on cortical, peripheral, and psychological measures and the dependence of these effects on nicotine. Four groups of subjects, nonsmokers, and habitual smokers who smoked cigarettes during the experimental sessions containing 0.3, 0.8, or 1.5 mg nicotine, respectively, participated in a feedback paradigm in which continuous feedback of mean blood pressure was provided for intervals of 8 s each. While tonic blood pressure did not differ between the groups, the ability to modulate blood pressure (under feedback conditions) was restricted in smokers as compared to nonsmoking subjects; increasing nicotine dosage was accompanied by poorer performance. Independently of habitual smoking and nicotine doses, heart rate increased during feedback and under conditions of blood pressure increase. In smokers, activity in the alpha band was reduced in a dose-dependent manner. Slow cortical potentials (SCPs) during the feedback interval varied with self-induced blood pressure changes in nonsmokers (blood pressure increase was accompanied by reduced surface-negative potential shifts and vice versa), while SCP variations during feedback conditions were small in smokers, more so under the influence of 0.3 and 0.8-mg nicotine, less so under 1.5 mg. Verbal reports suggest that awareness of performance strategies may not be a necessary variable for performance on the blood pressure regulation task.  相似文献   

8.
The present study investigated the effects of biofeedback of arterial blood pressure on cortical, peripheral, and psychological measures and the dependence of these effects on nicotine. Four groups of subjects, nonsmokers, and habitual smokers who smoked cigarettes during the experimental sessions containing 0.3, 0.8, or 1.5 mg nicotine, respectively, participated in a feedback paradigm in which continuous feedback of mean blood pressure was provided for intervals of 8 s each. While tonic blood pressure did not differ between the groups, the ability to modulate blood pressure (under feedback conditions) was restricted in smokers as compared to nonsmoking subjects; increasing nicotine dosage was accompanied by poorer performance. Independently of habitual smoking and nicotine doses, heart rate increased during feedback and under conditions of blood pressure increase. In smokers, activity in the alpha band was reduced in a dose-dependent manner. Slow cortical potentials (SCPs) during the feedback interval varied with self-induced blood pressure changes in nonsmokers (blood pressure increase was accompanied by reduced surface-negative potential shifts and vice versa), while SCP variations during feedback conditions were small in smokers, more so under the influence of 0.3 and 0.8-mg nicotine, less so under 1.5 mg. Verbal reports suggest that awareness of performance strategies may not be a necessary variable for performance on the blood pressure regulation task.This experiment was supported by Reemtsma Inc. Hamburg, which also provided the experimental cigarettes.  相似文献   

9.

Background

There is evidence that interventions aiming at modulation of the motor cortex activity lead to pain reduction. In order to understand further the role of the motor cortex on pain modulation, we aimed to compare the behavioral (pressure pain threshold) and neurophysiological effects (transcranial magnetic stimulation (TMS) induced cortical excitability) across three different motor tasks.

Methodology/Principal Findings

Fifteen healthy male subjects were enrolled in this randomized, controlled, blinded, cross-over designed study. Three different tasks were tested including motor learning with and without visual feedback, and simple hand movements. Cortical excitability was assessed using single and paired-pulse TMS measures such as resting motor threshold (RMT), motor-evoked potential (MEP), intracortical facilitation (ICF), short intracortical inhibition (SICI), and cortical silent period (CSP). All tasks showed significant reduction in pain perception represented by an increase in pressure pain threshold compared to the control condition (untrained hand). ANOVA indicated a difference among the three tasks regarding motor cortex excitability change. There was a significant increase in motor cortex excitability (as indexed by MEP increase and CSP shortening) for the simple hand movements.

Conclusions/Significance

Although different motor tasks involving motor learning with and without visual feedback and simple hand movements appear to change pain perception similarly, it is likely that the neural mechanisms might not be the same as evidenced by differential effects in motor cortex excitability induced by these tasks. In addition, TMS-indexed motor excitability measures are not likely good markers to index the effects of motor-based tasks on pain perception in healthy subjects as other neural networks besides primary motor cortex might be involved with pain modulation during motor training.  相似文献   

10.
The aim of this exploratory cross-sectional study was to investigate the characteristics of cortical activity and stress coping in migraine patients, meditation experienced subjects, and healthy controls. 45 meditation experienced subjects, 46 migraine patients, and 46 healthy controls took part in the study. Cortical activity was measured with the contingent negative variation (CNV), a slow cortical event-related potential. Stress coping was examined with the standardized Stress Coping Questionnaire SVF-78. A one-way analysis of variance was used to investigate possible differences between the groups. CNV-amplitude was significantly higher in migraineurs than in controls. The meditators showed significantly lowest amplitudes. Migraine patients used negative stress-coping strategies significantly more often than meditators and healthy controls. Especially the application of the strategy “rumination” was most frequent in migraine patients and least frequent in meditators. Moreover, frequent rumination was significantly correlated with high CNV-amplitudes. Cortical and stress processing in people with meditation experience was improved compared to migraine patients and healthy controls.  相似文献   

11.
Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology.  相似文献   

12.
In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS). During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10) or deoxygenated hemoglobin (deoxy-Hb group, N = 10) over the inferior frontal gyrus (IFG) during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.  相似文献   

13.
A blood volume pulse (BVP) biofeedback system is described that integrates BVP amplitude to provide a signal appropriate for auditory feedback. In comparison to binary BVP feedback methods, this integrated system offers the advantages of continuous feedback and increased scoring ease. The validity of this system was established by correlating the integrated BVP output with trough-to-peak measurements of the raw BVP signal during unassisted relaxation and temporal BVP biofeedback with eight migraine headache patients. Within-subject correlations of the integrated and raw BVP outputs ranged from .82 to .98 (X=.95). Although the integrated method admits unwanted BVP changes in rate, correlation analyses showed this confound factor to be small. Increments in biofeedback training effects were observed during the treatment course. Substantive migraine relief was achieved by the end of treatment and therapeutic gains were maintained at 1-year follow-up. In conclusion, it appears that this method successfully presents continuous auditory feedback from an integrated BVP signal resulting in therapeutic benefits to migraineurs.  相似文献   

14.
Biofeedback methods are well established as behavioral techniques for the therapy of various psychophysiological diseases. The forms of feedback generally employed are muscle activity (electromyogram), skin temperature, brain activity (electroencephalogram), and vasomotoricity. The latter technique, which employs plethysmographic feedback, has been studied most extensively in the therapy of migraine (vasoconstriction training, blood volume pulse training). Although the clinical efficacy has been demonstrated in several studies, little is known about the psychometric properties of this technique. This study examined the intrasession and intersession reliability of the pulse volume amplitude (PVA). The results showed that the PVA measurements within a single biofeedback session were highly reliable. Repositioning of the probe within the session resulted in a lower correlation coefficient, but one that was still sizable and significant. The PVA values from different sessions were not reliable (or comparable).  相似文献   

15.
The relative efficacy of EMG-frontalis feedback and progressive relaxation was examined in children with tension-type or combined headaches (8–14 yrs. old). Furthermore, the influence of parent involvement, in the form of a three-session educational approach, on training outcome was systematically explored (2 × 2 factor design). Fifty children took part in the study, 40 were randomly assigned to the four different treatment conditions, 10 children participated in the self-monitoring control group. The training comprised 6 sessions of 1 hr each in the relaxation treatment and 12 sessions of 1/2 hr duration in the biofeedback group. Headache diaries were kept by children and parents for 4-week period prior to therapy, and for a similar length of time at post-treatment and follow-up (6 months). Multivariate analyses of variance on the headache diary data yield no significant main or interaction effects of treatment format or of parent involvement, but only a main effect of period, indicating a general efficacy of the four treatment conditions. At follow-up the reduction of headache activity is even more prominent. A different evaluative approach points to the superiority of biofeedback revealing a mean effect size for biofeedback training that reflects a good to excellent improvement rate. Correlations between headache data from children and parents are high.  相似文献   

16.
Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.  相似文献   

17.
This study investigates the neurophysiological basis of EEG feedback for patients with epilepsy. Brain areas are identified that become hemodynamically deactivated when epilepsy patients, trained in EEG self-regulation, generate positive slow cortical potentials (SCPs). Five patients were trained in producing positive SCPs, using a training protocol previously established to reduce seizure frequency in patients with drug refractory epilepsy. Patients attempted to produce positive SCP shifts in a functional magnetic resonance imaging (fMRI) scanner. Two patients were able to reliably produce positive SCP shifts. When these successful regulators were prompted to produce positive SCPs, blood oxygen level-dependent (BOLD) response indicated deactivation, in comparison to a control state, around the recording electrode, frontal lobe, and thalamus. Unsuccessful regulators’ BOLD response indicated no deactivation in cortical areas proximal to the active electrode. No thalamic deactivation was found in poor regulators. Decreased seizure frequency from SCP training may be the result of positively reinforced inhibition in cortical areas proximal to active electrode placement, the frontal cortex, and the thalamus.  相似文献   

18.
The cerebral cortex serves a primary role in the pathogenesis of migraine. This aberrant brain activation in migraine can be noninvasively detected with magnetoencephalography (MEG). The objective of this study was to investigate the differences in motor cortical activation between attacks (ictal) and pain free intervals (interictal) in children and adolescents with migraine using both low- and high-frequency neuromagnetic signals. Thirty subjects with an acute migraine and 30 subjects with a history of migraine, while pain free, were compared to age- and gender-matched controls using MEG. Motor cortical activation was elicited by a standardized, validated finger-tapping task. Low-frequency brain activation (1∼50 Hz) was analyzed with waveform measurements and high-frequency oscillations (65–150 Hz) were analyzed with wavelet-based beamforming. MEG waveforms showed that the ictal latency of low-frequency brain activation was significantly delayed as compared with controls, while the interictal latency of brain activation was similar to that of controls. The ictal amplitude of low-frequency brain activation was significantly increased as compared with controls, while the interictal amplitude of brain activation was similar to that of controls. The ictal source power of high-frequency oscillations was significantly stronger than that of the controls, while the interictal source power of high-frequency oscillations was significantly weaker than that of controls. The results suggest that aberrant low-frequency brain activation in migraine during a headache attack returned to normal interictally. However, high-frequency oscillations changed from ictal hyper-activation to interictal hypo-activation. Noninvasive assessment of cortical abnormality in migraine with MEG opens a new window for developing novel therapeutic strategies for childhood migraine by maintaining a balanced cortical excitability.  相似文献   

19.
Behavioral and cognitive improvements in children with ADHD have been consistently reported after neurofeedback-treatment. However, neurofeedback has not been commonly accepted as a treatment for ADHD. This study addresses previous methodological shortcomings while comparing a neurofeedback-training of Theta-Beta frequencies and training of slow cortical potentials (SCPs). The study aimed at answering (a) whether patients were able to demonstrate learning of cortical self-regulation, (b) if treatment leads to an improvement in cognition and behavior and (c) if the two experimental groups differ in cognitive and behavioral outcome variables. SCP participants were trained to produce positive and negative SCP-shifts while the Theta/Beta participants were trained to suppress Theta (4–8 Hz) while increasing Beta (12–20 Hz). Participants were blind to group assignment. Assessment included potentially confounding variables. Each group was comprised of 19 children with ADHD (aged 8–13 years). The treatment procedure consisted of three phases of 10 sessions each. Both groups were able to intentionally regulate cortical activity and improved in attention and IQ. Parents and teachers reported significant behavioral and cognitive improvements. Clinical effects for both groups remained stable six months after treatment. Groups did not differ in behavioural or cognitive outcome.  相似文献   

20.
Biofeedback control of migraine headaches: a comparison of two approaches   总被引:1,自引:0,他引:1  
In order to assess the relative effectiveness of finger warming and temporal blood volume pulse reduction biofeedback in the treatment of migraine, 22 female migraine patients were assigned to one of three experimental conditions: temporal artery constriction feedback, finger temperature feedback, or waiting list. Biofeedback training consisted of 12 sessions over a 6-week period. All patients completed 5 weeks of daily self-monitoring of headache activity (frequency, duration, and intensity) and medication before and after treatment. Treatment credibility was assessed at the end of Sessions 1, 6, and 12. Results showed that temporal constriction and finger temperature biofeedback were equally effective in controlling migraine headaches and produced greater benefits than the waiting list condition. Power analyses indicated that very large sample sizes would have been required to detect any significant differences between the two treatment groups. No significant relationships were found between levels of therapeutic gains and levels of thermal or blood volume pulse self-regulation skills. Likewise, treatment outcome was not found to be related to treatment credibility. Further analyses revealed that changes in headache activity and medication were associated with changes in vasomotor variability. Because blood volume pulse variability was not significantly affected by biofeedback training, questions about its role in the therapeutic mechanism are raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号