首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method of preparation of bovine polymorphonuclear leukocytes (PMN) is described. The subcellular distribution of cytochrome b in resting and activated bovine PMN was compared to that of the O2-.-generating oxidase (assessed as NADPH cytochrome c reductase inhibited by superoxide dismutase). In resting PMN and in PMN activated by phorbol myristate acetate (PMA), cytochrome b was located into two membrane fractions, one of which was enriched in plasma membrane and cosedimented with alkaline phosphatase, while the other consisted of a denser material cosedimenting with markers of the specific and azurophil granules, i.e. the vitamin-B12-binding protein and myeloperoxidase respectively. During activation of PMN by PMA, 15-20% cytochrome b migrated from dense granules to the plasma membrane. The distribution of the O2-. generating oxidase and cytochrome b in subcellular particles was studied during the course of phagocytosis of PMA-coated latex beads by bovine PMN. At the onset of the respiratory burst, the phagocytic vacuoles arising from internalization of the plasma membrane were enriched in oxidase and alkaline phosphatase, but their specific content of cytochrome b was limited; in contrast, cytochrome b was predominant in denser membrane fractions cosedimenting with myeloperoxidase and the vitamin-B12-binding protein. After a few minutes of phagocytosis, a fraction of light vacuoles, slightly denser than the phagocytic vacuoles, became enriched in O2-.-generating oxidase, cytochrome b, the vitamin-B12-binding protein and myeloperoxidase. These vacuoles probably arose from the fusion of the phagocytic vacuoles with dense granules. In bovine PMN supplemented with glucose and maintained in anaerobiosis, activation by PMA induced slow reduction of cytochrome b (60-70% in 15 min at 37 degrees C). Similar results were obtained with cytoplasts after activation by PMA (30% reduction in 3 min at 37 degrees C). Cytochrome b in a particulate fraction obtained by centrifugation at 100 000 X g of an homogenate of PMA-activated PMN, was slowly reduced upon addition of NADPH under anaerobiosis (less 20% in 20 min at 37 degrees C). No reduction occurred in the 100 000 X g fraction prepared from non-activated PMN. The Soret band of cytochrome b reduced by dithionite was displaced by CO only by 1-2 nm. At subsaturating concentrations, CO had no effect on the rate of O2 uptake by activated bovine PMN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
J Doussiere  P V Vignais 《Biochemistry》1985,24(25):7231-7239
A membrane-associated O2-.-generating oxidase has been purified from activated bovine polymorphonuclear neutrophils (PMN). The oxidase was extracted with Triton X-100 from a PMN membrane fraction largely devoid of lysosomal granules. The Triton extract was purified by a series of steps, including ion-exchange chromatography on DE-52 cellulose, gel filtration on Sephadex G-200, and isoelectric focusing. The O2-.-generating oxidase activity was assayed as a superoxide dismutase inhibitable cytochrome c reductase. The activity of the purified enzyme was strictly dependent on NADPH as electron donor. The purification factor with respect to the phorbol myristate acetate activated PMN was 75, and the recovery was about 6%. The reactivity of the purified oxidase was increased by 3-4-fold after incubation with asolectin. The minimum molecular weight of the oxidase, deduced from migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 65 000 +/- 3000. The optimum pH of the oxidase was 7.5, its KM,NADPH was congruent to 30 microM, and its isoelectric point was at pH 5.0. The enzyme was inhibited by low concentrations of mersalyl (half-inhibition congruent to 10 microM) and Cibacron Blue (half-inhibition less than 10 microM). It was insensitive to 1 mM cyanide. Rapid loss of activity occurred at 0-2 degrees C, concomitantly with a decrease in sensitivity to superoxide dismutase: both activity and sensitivity to superoxide dismutase could be restored by addition of asolectin. The purified oxidase contained no spectrophotometrically detectable cytochrome b, and enzymatic assay failed to detect FAD in oxidase preparations subjected to heat treatment or trypsin digestion.  相似文献   

3.
The assignment of cytochrome b-558 as a component of the O2- (H2O2) -generating enzyme in guinea-pig alveolar macrophages was investigated. Guinea pig alveolar macrophages contained 76 pmol cytochrome b-558/mg protein, a value very similar to that of neutrophils. The rate of myristic acid-stimulated O2- generation by alveolar macrophages, calculated per cytochrome b-558, was only one-fourth that of neutrophils. An analysis of Percoll density gradient centrifugation profiles showed that the H2O2-generating activity of myristic acid-activated alveolar macrophages was concentrated in a single peak which was consistently associated with 5'-nucleotidase activity, a plasma membrane marker enzyme. A little H2O2-generating activity was seen with unactivated alveolar macrophages. Furthermore, the cytochrome b-558 of both myristic acid-activated and unactivated alveolar macrophages was also predominantly associated with 5'-nucleotidase activity and was found in trace amounts in a peak containing lysozyme activity, a marker of lysosome granules. Only about 6% of the cytochrome b-558 in plasma membranes from myristic acid-activated guinea-pig alveolar macrophages was anaerobically reduced by 0.5 mM NADPH, while under the same conditions about 30% of the heme protein of myristic acid-activated neutrophils was reduced. These results suggest two conclusions: firstly, that in both activated and unactivated alveolar macrophages, cytochrome b-558 is located in the plasma membrane, and the translocation of cytochrome b-558 does not occur during the activation of NADPH oxidase; and secondly, that a smaller part of cytochrome b-558 is associated with the activated NADPH oxidase of guinea pig alveolar macrophages compared with neutrophils.  相似文献   

4.
A reconstitution system for activation of the O2(.-)-generating oxidase from bovine polymorphonuclear neutrophils (PMN) is described. This system consisted of three components, namely, a particulate fraction enriched in plasma membrane, a supernatant fluid (cytosolic fraction) recovered by high-speed centrifugation from sonicated resting bovine PMN, and arachidonic acid. The pH optimum (7.8) and the Km value for NADPH (45 microM) of the activated oxidase were virtually the same as those found in the purified enzyme. All three components had to be present during the preincubation for elicitation of oxidase activity. A further enhancement of oxidase activity was observed with the addition of nonhydrolyzable GTP analogues, such as guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imidotriphosphate) (GMP-PNP), to the preincubation medium. In contrast, GDP-beta-S drastically decreased oxidase activation. In a two-stage experiment, a 9-min preincubation of PMN membranes with arachidonic acid and GTP-gamma-S followed by a 1-min contact with the cytosolic fraction led to a more marked activation than did preincubation of the cytosol with arachidonic acid and GTP-gamma-S for 9 min followed by a 1-min contact with membranes, suggesting the presence of a G-protein in the membrane fraction. In the absence of added cations, the reconstitution system exhibited a substantial oxidase activity which was totally prevented by ethylenediaminetetraacetic acid (EDTA). Mg2+ added at a concentration of 0.5-1 mM enhanced oxidase activation by about 30%, indicating that endogenous Mg2+ or other activating cations were sufficient to ensure 70% of maximal activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity.  相似文献   

6.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

7.
The phorbol myristate acetate (PMA) stimulation of the human neutrophil NADPH-oxidase has been demonstrated through the activation of protein kinase C (PK-C), using light membrane fractions from nitrogen-cavitated cells. Both arachidonic acid (AA) and sodium dodecyl sulfate (SDS) can also generate an active oxidase in cellfree systems. That the source of O2- with AA and SDS activation is the same NADPH-oxidase as previously studied was confirmed by the similar pH optima and Km values for NADPH as those previously described for the O2- -generating activity harvested from pre-stimulated human neutrophils. In contrast to the stimulation by PMA, however, the stimulation of the NADPH-oxidase by AA and SDS does not appear to require protein kinase C activation: the action of AA and SDS is independent of the addition of PK-C cofactors to the system, and the inhibitor of PK-C activity, H-7, had no effect on the stimulation by AA or SDS. AA and SDS activation are comparable, but the level of NADPH-oxidase expression is sixfold greater with each of these agents than that obtained with a reconstituted PK-C system. The basis of this difference in oxidase expression is unclear, but these findings suggest strongly that although activated PK-C is capable of stimulating a dormant NADPH-oxidase in a cellfree system, this is not the sole pathway for oxidase activation.  相似文献   

8.
Respiratory burst in alveolar macrophages of diabetic rats   总被引:1,自引:0,他引:1  
Bactericidal ability of alveolar macrophages is depressed in rats with diabetes mellitus. To define the mechanism of this abnormality, we measured the parameters of respiratory burst in alveolar macrophages, peripheral blood monocytes, and neutrophils of rats 8 wk after the induction of diabetes by streptozocin. Superoxide anion (O2-.) generation during basal conditions and after stimulation with phorbol myristate acetate (PMA) was measured as superoxide dismutase-inhibitable cytochrome c reduction. NADPH, the principal substrate for NADPH-oxidase-dependent O2-. generation, was measured in the alveolar macrophages and quick-frozen lungs by the enzyme-cycling method. O2-. generation after PMA was significantly lower in the alveolar macrophages of diabetics than in the controls (14.4 +/- 2.0 nmol.10(6) cells-1.20 min-1 vs. 26.2 +/- 1.9, P less than 0.05). Conversely the peripheral blood monocytes of diabetics demonstrated an enhanced O2-. production after PMA stimulation. There was no significant difference in the neutrophil O2-.-generation between the groups. The alveolar macrophage NADPH (control 0.44 +/- 0.15 nmol/10(6) cells vs. diabetic 0.21 +/- 0.04, P less than 0.05) and lung tissue NADPH levels (control 81.4 +/- 16.3 nmol/g dry wt vs. diabetic 35.8 +/- 20.5, P less than 0.05) were significantly lower in the diabetics than in the controls. These data indicate that the O2-.-generating capacity of alveolar macrophages is markedly depressed in diabetes, whereas their precursors, monocytes, are primed to generate O2-. with PMA stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Activation of the neutrophil NADPH oxidase by either the bacterial peptide fMLP or phorbol myristate acetate (PMA) is partially suppressed by SB 203580, a specific inhibitor of the MAP kinase family member, SAPK2/p38. The concentration of SB 203580 that suppresses activation of NADPH oxidase is similar to that which inhibits SAPK2/p38 in vitro, and both fMLP and PMA induce an extremely rapid and potent activation of SAPK2/p38 in neutrophils. SB 203580 does not exert its effect by preventing the neutrophil priming reaction, by suppressing the phosphorylation of p47phax, or by preventing the translocation of p47phax/p67phax to the plasma membrane.  相似文献   

10.
Hog thyroid plasma membrane preparations containing a Ca2+-regulated NADPH-dependent H2O2-generating system were studied. The Ca2+-dependent reductase activities of ferricytochrome c, 2,6-dichloroindophenol, nitroblue tetrazolium, and potassium ferricyanide were tested and the effect of these scavengers on H2O2 formation, NADPH oxidation and O2 consumption were measured, with the following results. 1. Thyroid plasma membrane Ca2+-independent cytochrome c reduction was not catalyzed by the NADPH-dependent H2O2-generating system. This activity was superoxide-dismutase-insensitive. 2.Of the three other electron scavengers tested, only K3Fe(CN)6 was clearly, but partially reduced in a Ca2+-dependent manner. 3. Though the NADPH-dependent reduction of nitroblue tetrazolium was very low and superoxide-dismutase-insensitive, nitroblue tetrazolium inhibited O2 consumption, H2O2 formation and NADPH oxidation, indicating that nitroblue tetrazolium inhibits the H2O2-generating system. We conclude that the thyroid plasma membrane H2O2-generating system does not or liberate O2- and that Ca2+ controls the first step (NADPH oxidation) of the H2O2-generating system.  相似文献   

11.
Rapid generation of reactive oxygen species (ROS) at the cell surface has been implicated in plant defence responses. Genetic evidence indicates that a plant NADPH oxidase (Rboh; respiratory burst oxidase homologue) is associated with oxidative burst. However, there is not enough physiological evidence of Rboh localization available yet. Isozyme-specific antibodies against potato StrbohA and StrbohB (St; Solanum tuberosum) were prepared to investigate the localization of these proteins. Immunoblot analyses using potato microsomal proteins revealed that StrbohA was expressed constitutively at a low level, whereas the accumulation of StrbohB protein was induced by the cell wall elicitor of the potato pathogen Phytophthora infestans. It is demonstrated here that StrbohA and StrbohB are distributed in plasma membrane fractions which have been separated by sucrose density-gradient centrifugation using their specific antibodies. Green fluorescent protein-tagged Strboh proteins were also located on the plasma membrane by transient expression assay in onion epidermal cells. Additionally, NADPH-dependent O2(-)-generating activities in plasma membrane fractions were diphenylene iodonium-sensitive and NaN3-insensitive. These data suggest that StrbohA and StrbohB are predominantly localized on the plasma membrane and regulate ROS production in defence signalling.  相似文献   

12.
Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47(phox), a major cytosolic component of this oxidase. Protein kinase C zeta (PKC zeta), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC zeta in p47(phox) phosphorylation and in superoxide anion production by human PMN. In vitro incubation of recombinant p47(phox) with recombinant PKC zeta induced a time- and concentration-dependent phosphorylation of p47(phox) with an apparent K(m) value of 2 microM. Phosphopeptide mapping analysis of p47(phox) showed that PKC zeta phosphorylated fewer selective sites in comparison to "conventional" PKCs. Serine 303/304 and serine 315 were identified as targets of PKC zeta by site-directed mutagenesis. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC zeta that correlated to that of p47(phox). A cell-permeant-specific peptide antagonist of PKC zeta inhibited both fMLP-induced phosphorylation of p47(phox) and its membrane translocation. The antagonist also inhibited the fMLP-induced production of oxidant (IC(50) of 10 microM), but not that induced by PMA. The inhibition of PKC zeta expression in HL-60 neutrophil-like cells using antisense oligonucleotides (5 and 10 microM) inhibited fMLP-promoted oxidant production (27 and 50%, respectively), but not that induced by PMA. In conclusion, p47(phox) is a substrate for PKC zeta and participates in the signaling cascade between fMLP receptors and NADPH oxidase activation.  相似文献   

13.
Cellular responses induced in human neutrophils by the synthetic diacylglycerol, 1-oleoyl-2-acetyl-glycerol (OAG), paralleled those induced by phorbol myristate acetate (PMA). Like PMA, OAG caused the preferential release of enzymes from specific granules and promoted superoxide (O2-) generation. The efficacy of OAG was similar to that for PMA, but its potency was lower by four orders of magnitude. First derivative kinetic analysis showed that rates of O2- generation elicited by PMA decayed exponentially in a first order manner; the half life was found to be 21 +/- 6 min. Results obtained in studies carried out with high OAG concentrations were similar except that after 40 min, the rate of decay increased and became complex order. This difference was attributed to the greater susceptibility of OAG to metabolic alteration, and was reflected in the NADPH oxidase activity of granule rich membrane fractions (GRF) of cells stimulated for 90 min with PMA or OAG. It was found that the O2- generating activity of the PMA treated GRF was significantly greater than that for the OAG treated fraction. Current evidence indicates that cellular responses arise from direct activation of protein kinase C by PMA-OAG. The stability of this complex and the bypassing of normal regulatory constraints may account for the relative longevity of the PMA-OAG O2- respiratory burst.  相似文献   

14.
Experiments were performed to probe the role of exocytotic and endocytotic processes in the regulation of the human granulocyte O-2-generating system. Analytical subcellular fractionation studies indicated that 25-30% of the total cellular b-cytochrome and 8-10% of the flavin co-sedimented with plasma membrane markers, irrespective of stimulation of the cells by the chemoattractants N-formyl-Met-Leu-Phe (FMLP) or C5a. Phorbol myristate acetate stimulation resulted in significant translocation of b-cytochrome but not flavin from the specific granule/Golgi to the plasma membrane-enriched fractions. These results indicated that approximately 3.1 X 10(5) flavin and 0.8-1 X 10(6) b-cytochrome molecules are present in the plasma membrane of an isolated unstimulated human granulocyte and that these levels are invariant upon stimulation with chemoattractants. Maximal instantaneous rates of O-2 generation by cells in these preparations, however, were equivalent for all the stimuli. Since stimulation of granulocytes by phorbol myristate acetate, FMLP, or C5a results in exocytosis and/or endocytosis, then the role of these processes in regulating stimulated O-2 production by controlling the content of plasma membrane redox enzymes is questionable. This conclusion was supported by observations made with cytoplasts, which do not have an intracellular reserve of granules. Cytoplasts prepared from granulocytes produced O-2 at equivalent rates as their parent cells on a per unit surface area basis. These results suggest: 1) that stimulation of granulocytes with chemotactic peptides leads to full generation of O-2 at the cell surface without exocytotic recruitment of additional b-cytochrome and flavoprotein from the cytoplasmic compartment; 2) that these redox enzymes are not internalized along with chemoattractant receptors; and 3) that traffic of these redox enzymes between endo- and plasma membranes is not involved in the regulation of O-2 production in suspensions of human granulocytes stimulated by chemoattractants.  相似文献   

15.
We describe a new method for subcellular fractionation of human neutrophils. Neutrophils were disrupted by nitrogen cavitation and the nuclei removed by centrifugation. The postnuclear supernatant was applied on top of a discontinuous Percoll density gradient. Centrifugation for 15 min at 48,000 g resulted in complete separation of plasma membranes, azurophil granules, and specific granules. As determined by ultrastructure and the distribution of biochemical markers of these organelles, approximately 90% of the b-cytochrome in unstimulated cells was recovered from the band containing the specific granules and was shown to be in or tightly associated with the membrane. During stimulation of intact neutrophils with phorbol myristate acetate or the ionophore A23187, we observed translocation of 40-75% of the b-cytochrome to the plasma membrane. The extent of this translocation closely paralleled release of the specific granule marker, vitamin B12-binding protein. These data indicate that the b-cytochrome is in the membrane of the specific granules of unstimulated neutrophils and that stimulus-induced fusion of these granules with the plasma membrane results in a translocation of the cytochrome. Our observations provide a basis for the assembly of the microbicidal oxidase of the human neutrophil.  相似文献   

16.
A plasma membrane fraction of bovine polymorphonuclear neutrophils enriched in NADPH-dependent, O2-. generating oxidase activity, and a number of fractions solubilized in detergent, recovered during the course of the purification of this oxidase have been tested for their ability to react with radiolabeled N-4-azido-2-nitrophenyl aminobutyryl NADP+ (arylazido NADP+ or NAP4-NADP+). In the dark, NAP4-NADP+ and its reduced form NAP4-NADPH, were found to inhibit competitively the NADPH-dependent O2-. generating oxidase activity of the plasma membrane fraction of bovine neutrophils activated by phorbol myristate acetate. The nitrene derivative formed upon photoirradiation of NAP4-NADP(H) bound covalently to different proteins of the plasma membrane. Photolabeling of these proteins was prevented by preincubation with an excess of NADPH. Photolabeling of a protein of 65,000 Mr was decreased by omission of phorbol myristate acetate as activating agent of the respiratory burst in neutrophils or by addition of micromolar amounts of Cibacron Blue and mersalyl which are known to inhibit the production of O2-. by the plasma membrane fraction. During the course of the purification procedure, the 65000 Mr protein emerged as the preferentially photolabeled protein. These data, in agreement with previous findings concerning the purification of an NADPH-dependent, O2-. generating oxidase protein of Mr 65000 from bovine neutrophils (Doussière, J. and Vignais, P.V. (1985) Biochemistry 24, 7231-7239), strongly suggest that a single protein of Mr 65000, located in the plasma membrane fraction of bovine neutrophils, is able to act both as an NADPH deshydrogenase and as an oxygen reductase to generate O2-.  相似文献   

17.
Anionic amphiphiles such as long chain unsaturated fatty acids and SDS were shown to activate the superoxide (O2-) producing NADPH oxidase in a cell-free system derived from sonically disrupted phagocytes (macrophages and granulocytes). O2- production required the cooperation of a membrane associated component sedimenting at 48,000 X g (pi) and a cytosolic factor (sigma). The purpose of the present investigation was to find out whether components pi and sigma were also present in non-phagocytic cells that do not produce O2- when stimulated. It was found that the 48,000 X g pellets of guinea pig lymph node and thymus cell sonicates contained significant amounts of component pi, as shown by their ability to support SDS-elicited NADPH-dependent O2- production when supplemented with macrophage cytosol. Lymph node and thymus pi could be extracted from the membrane by 30 mM octyl glucoside, just as its macrophage-derived equivalent. Combining lymph node and thymus 48,000 X g pellet with autologous cytosol did not yield an active enzyme preparation. Also, cytosol from lymph node and thymus cells could not cooperate with macrophage 48,000 X g pellet, indicating that component sigma was lacking in lymphoid cells. Neither pi nor sigma could be detected in guinea pig kidney, the mouse myeloma cell line MOPC 315 and the canine cell line Cf2Th. The 48,000 X g pellet of all nonphagocytic cells examined contained a b-cytochrome that resembled, by its spectral characteristics, the cytochrome b559 thought to be characteristic of phagocytes. In macrophages, cytochrome b559 represented 80% of b-cytochrome content of the 48,000 X g pellet, whereas in non-phagocytic cells, the equivalent material represented only 50 to 60%. There was no correlation between the presence and quantity of the cytochrome b559-like chromophore in the 48,000 X g pellet of a particular cell type and its ability to cooperate with macrophage cytosol in SDS-elicited O2- production.  相似文献   

18.
Superoxide anion (O2-) production stimulated by concanavalin A (Con A) in guinea pig polymorphonuclear leukocytes (PMNL) was suppressed by addition of methyl-alpha-mannoside, a Con A inhibitor, and resumed upon readdition of Con A. The reversible change in the O2- production was assumed to reflect the change in NADPH oxidase activity measured for the 30,000 X g particulate fraction. The stimulation by Con A of the phosphorylation of 46K protein(s), as observed previously with several membrane-perturbing agents in parallel with an activation of NADPH oxidase in intact guinea pig PMNL (Okamura, N., et al. (1984) Arch. Biochem. Biophys. 228, 270-277), was also suppressed by methyl-alpha-mannoside and resumed upon readdition of Con A. Similar parallelism between the phosphorylation and NADPH oxidase activity was also observed in the case of stimulation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and phorbol 12-myristate 13-acetate (PMA), though both processes were reversible after the stimulation by FMLP but not reversible after that by PMA. Thus, such a parallelism observed in both intact PMNL and 30,000 X g particulate fraction indicates possible involvement of the protein phosphorylation in the regulation of the production of active oxygen metabolites in PMNL.  相似文献   

19.
Gliotoxin from Aspergillus, bearing a S&bond;S bond in its structure, prevented the onset of O(-)(2) generation by the human neutrophil NADPH oxidase in response to phorbol myristate acetate (PMA). Gliotoxin affected the activation process harder than the activated oxidase, as shown by its stronger inhibition when added to neutrophils prior to, than post-PMA at maximum enzyme turnover. Decreased O(-)(2) generation persisted even if cells treated with gliotoxin were subsequently washed, with half-inhibition concentrations (IC(50)) of 5.3, and 3.5 microM for treatments of 15 and 30 min, respectively. In addition, gliotoxin made neutrophils reduce cytochrome c regardless of absence of PMA, through its reaction with intracellular reductants in an oxygen-dependent process, named redox cycling. Thus, we next tested whether preincubation of neutrophils with gliotoxin under hypoxic conditions would relieve the inhibition of NADPH oxidase. Instead, this prevention of redox cycling significantly favored damage to the NADPH oxidase with an IC(50) of 0.009 microM. Moreover, conversion of gliotoxin to its dithiol derivative by addition of reduced dithiothreitol during incubation protected cells from losing oxidase activity. These findings support that the disulfide form of gliotoxin targets NADPH oxidase activation.  相似文献   

20.
Sodium dodecyl sulfate (SDS) elicits the production of superoxide (O2-) by a cell-free system represented by sonically disrupted guinea pig peritoneal macrophages. O2- generation requires NADPH and a heat-sensitive cellular component, is proportional to the amount of macrophage protein, and exhibits a pH optimum of 6.5-7. The kinetic parameters of the SDS-stimulated enzyme are: Km (+/- S.E.) = 0.0367 +/- 0.003 mM NADPH and Vmax (+/- S.E.) = 73.46 +/- 9.09 nmol O2-/mg of protein/min. O2- production is dependent on the cooperation between a particulate subcellular component sedimentable at 48,000 X g and a cytosolic factor present in the 48,000 X g supernatant. The activity of both components is destroyed by heating at 80 degrees C. Pretreatment of intact macrophages with phorbol myristate acetate results in the partial removal of the requirement for cytosolic factor; SDS is now capable of activating the isolated 48,000 X g pellet. Among a large number of anionic, cationic, and nonionic detergents tested, only the anionic detergents SDS and sodium dodecyl sulfonate are capable of eliciting O2- production in the cell-free system, SDS being the more potent stimulant. It is proposed that the structural requirements that make these compounds capable of activating the O2- forming NADPH oxidase in a cell-free system are the presence of an anionic polar head and a long hydrophobic alkyl tail. We suggest that sodium salts of long chain unsaturated fatty acids that were found by us to be capable of stimulating O2- production in a cell-free system (Bromberg, Y., and Pick, E. (1984) Cell. Immunol. 88, 213-221) owe their activity to the fact that they function as anionic detergents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号