首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identification of Birds through DNA Barcodes   总被引:37,自引:2,他引:35       下载免费PDF全文
Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens.  相似文献   

2.
DNA barcode (mitochondrial COI) sequences are provided for species identification of aphids from the Korean Peninsula. Most (98%) of the 154 species had distinct COI sequences (average 0.05% intraspecific pairwise divergence) relative to the degree of sequence divergence among species (average value 5.84%). For species in common with other regions, barcodes for Korean samples fell near or within known levels of variation. Based on these results, we conclude that DNA barcodes can provide an effective tool for identifying aphid species in such applications as pest management, monitoring and plant quarantine.  相似文献   

3.
Several recent studies have proposed that partial DNA sequences of the cytochrome c oxidase I (COI) mitochondrial gene might serve as DNA barcodes for identifying and differentiating between animal species, such as birds, fish and insects. In this study, we tested the effectiveness of a COI barcode to identify true bugs from 139 species collected from Korea and adjacent regions (Japan, Northeastern China and Fareast Russia). All the species had a unique COI barcode sequence except for the genus Apolygus (Miridae), and the average interspecific genetic distance between closely related species was about 16 times higher than the average intraspecific genetic distance. DNA barcoding identified one probable new species of true bug and revealed identical or very recently divergent species that were clearly distinguished by morphological characteristics. Therefore, our results suggest that COI barcodes can reveal new cryptic true bug species and are able to contribute for the exact identification of the true bugs.  相似文献   

4.

Background

The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous.

Results

We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae.

Conclusion

Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.  相似文献   

5.
Zhang AB  Feng J  Ward RD  Wan P  Gao Q  Wu J  Zhao WZ 《PloS one》2012,7(2):e30986
Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.  相似文献   

6.
[目的]明确山西翅果油树Elaeagnus mollis上发生危害的3种鳞翅目害虫形态鉴定特征及生活史特性,并基于mtDNA COI基因DNA条形码对这3个种进行快速物种识别鉴定.[方法]通过观察山西翅果油树上3种鳞翅目害虫成虫外部形态和解剖拍照雌、雄性外生殖器特征,利用PCR扩增对待测样本COI基因DNA条形码序列进...  相似文献   

7.
DNA barcoding Korean birds   总被引:6,自引:0,他引:6  
Yoo HS  Eah JY  Kim JS  Kim YJ  Min MS  Paek WK  Lee H  Kim CB 《Molecules and cells》2006,22(3):323-327
DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxi- dase I (COI) might serve as a DNA barcode for identify- ing animal species such as North American birds, in- sects and fishes. The present study tested the effective- ness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI bar- code for 92 species of Korean birds and found that spe- cies identification was unambiguous; the genetic differ- ences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased in- tra- and interspecies sampling, as well as supplementa- tion of the mitochondrial barcodes with nuclear ones, is needed.  相似文献   

8.
DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.  相似文献   

9.
The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.  相似文献   

10.
The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was <0.5%, with most species exhibiting no variation in any of the three gene regions. Interspecific divergence was also low: 18.5% of congeneric morphospecies shared identical COI barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy.  相似文献   

11.
DNA barcoding using mitochondrial cytochrome c oxidase subunit I (COI) is regarded as a standard method for species identification. Recent reports have also shown extended applications of COI gene analysis in phylogeny and molecular diversity studies. The bee-eaters are a group of near passerine birds in the family Meropidae. There are 26 species worldwide; five of them are found in Saudi Arabia. Until now, GenBank included a COI barcode for only one species of bee-eater, the European bee-eater (Merops apiaster). We sequenced the 694-bp segment of the COI gene of the green bee-eater M. orientalis and compared the sequences with those of M. apiaster. Pairwise sequence comparison showed 66 variable sites across all the eight sequences from both species, with an interspecific genetic distance of 0.0362. Two and one within-species variable sites were found, with genetic distances of 0.0005 and 0.0003 for M. apiaster and M. orientalis, respectively. This is the first study reporting barcodes for M. orientalis.  相似文献   

12.
DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53-97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments.  相似文献   

13.
Studies focusing on marine macrophyte metabarcoding from environmental samples are scarce, due to the lack of a universal barcode for these taxa, and to their poor representation in DNA databases. Here, we searched for a short barcode able to identify marine macrophytes from tissue samples; then, we created a DNA reference library which was used to identify macrophytes in eDNA from coastal sediments. Barcoding of seagrasses, mangroves and marine macroalgae (Chlorophyta, Rhodophyta and Phaeophyceae) was tested using 18 primer pairs from six barcoding genes: the plant barcodes rbcL, matK and trnL, plus the genes ITS2, COI and 18S. The 18S gene showed the highest universality among marine macrophytes, amplifying 95%–100% of samples; amplification performance of the other barcodes was limited. Taxonomy was assigned using a phylogeny‐based approach to create an 18S DNA reference library. Macrophyte tissue sequences were accurately identified within their phyla (88%), order (76%), genus (71%) and species (23%). Nevertheless, out of 86 macrophytes tested, only 48% and 15% had a reference sequence at genus and at species level, respectively. Identification at these levels can be improved by more inclusive reference libraries. Using the 18S mini‐barcode and the reference library, we recovered eDNA from 21 marine macrophytes in sediments, demonstrating the barcode's ability to trace primary producers that contribute to blue carbon. We expect this barcode to also be useful for other ecological questions, such as tracing macro primary producers in marine food webs.  相似文献   

14.
Zou S  Li Q  Kong L  Yu H  Zheng X 《PloS one》2011,6(10):e26619

Background

DNA barcoding has recently been proposed as a promising tool for the rapid species identification in a wide range of animal taxa. Two broad methods (distance and monophyly-based methods) have been used. One method is based on degree of DNA sequence variation within and between species while another method requires the recovery of species as discrete clades (monophyly) on a phylogenetic tree. Nevertheless, some issues complicate the use of both methods. A recently applied new technique, the character-based DNA barcode method, however, characterizes species through a unique combination of diagnostic characters.

Methodology/Principal Findings

Here we analyzed 108 COI and 102 16S rDNA sequences of 40 species of Neogastropoda from a wide phylogenetic range to assess the performance of distance, monophyly and character-based methods of DNA barcoding. The distance-based method for both COI and 16S rDNA genes performed poorly in terms of species identification. Obvious overlap between intraspecific and interspecific divergences for both genes was found. The “10× rule” threshold resulted in lumping about half of distinct species for both genes. The neighbour-joining phylogenetic tree of COI could distinguish all species studied. However, the 16S rDNA tree could not distinguish some closely related species. In contrast, the character-based barcode method for both genes successfully identified 100% of the neogastropod species included, and performed well in discriminating neogastropod genera.

Conclusions/Significance

This present study demonstrates the effectiveness of the character-based barcoding method for species identification in different taxonomic levels, especially for discriminating the closely related species. While distance and monophyly-based methods commonly use COI as the ideal gene for barcoding, the character-based approach can perform well for species identification using relatively conserved gene markers (e.g., 16S rDNA in this study). Nevertheless, distance and monophyly-based methods, especially the monophyly-based method, can still be used to flag species.  相似文献   

15.
The All Birds Barcoding Initiative aims to assemble a DNA barcode database for all bird species, but the 648-bp 'barcoding' region of cytochrome c oxidase subunit I (COI) can be difficult to amplify in Southeast Asian perching birds (Aves: Passeriformes). Using COI sequences from complete mitochondrial genomes, we designed a primer pair that more reliably amplifies and sequences the COI barcoding region of Southeast Asian passerine birds. The 655-bp region amplified with these primers overlaps the COI region amplified with other barcoding primer pairs, enabling direct comparison of sequences with previously published DNA barcodes.  相似文献   

16.
DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high‐throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree‐based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species‐specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.  相似文献   

17.
Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.  相似文献   

18.
Even though the interest in metabarcoding in environmental studies is growing, euglenids are still underrepresented in both sea and freshwater bodies researches. The reason for this situation could be the unsuitability of universal eukaryotic DNA barcodes and primers as well as the lack of a verified protocol, suitable to assess euglenid diversity. In this study, using specific primers for the V2 hypervariable region of 18S rDNA for metabarcoding resulted in obtaining a high fraction (85%) of euglenid reads and species-level identification of almost 90% of them. Fifty species were detected by the metabarcoding method, including almost all species observed using a light microscope. We investigated three biomass harvesting methods (filtering, centrifugation and scraping the side of a collection vessel) and determined that centrifugation and filtration outperformed scrapes, but the choice between them is not crucial for the reliability of the analysis. In addition, eight DNA extraction methods were evaluated. We compared five commercially available DNA isolation kits, two CTAB-based protocols and a chelating resin. For this purpose, the efficiency of extraction, quality of obtained DNA, preparation time and generated costs were taken into consideration. After examination of the aforementioned criteria, we chose the GeneMATRIX Soil DNA Purification Kit as the most suitable for DNA isolation.  相似文献   

19.
Plant DNA barcoding: from gene to genome   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single‐locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole‐chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource‐effective and does not yet offer the speed of analysis provided by single‐locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super‐barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single‐locus barcodes and super‐barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.  相似文献   

20.
Partial (~ 780 bp) mitochondrial cytochrome c oxidase subunit I (COI) and near complete nuclear 18S rDNA (~ 1,780 bp) sequences were directly compared to assess their relative usefulness as markers for species identification and phylogenetic analysis of coccidian parasites (phylum Apicomplexa). Fifteen new COI partial sequences were obtained using two pairs of new primers from rigorously characterised (sensu Reid and Long, 1979) laboratory strains of seven Eimeria spp. infecting chickens as well as three additional sequences from cloned laboratory strains of Toxoplasma gondii (ME49 and GT1) and Neospora caninum (NC1) that were used as outgroup taxa for phylogenetic analyses. Phylogenetic analyses based on COI sequences yielded robust support for the monophyly of individual Eimeria spp. infecting poultry except for the Eimeria mitis/mivati clade; however, the lack of a phenotypically characterised strain of E. mivati precludes drawing any firm conclusions regarding this observation. Unlike in the 18S rDNA-based phylogenetic reconstructions, Eimerianecatrix and Eimeria tenella formed monophyletic clades based on partial COI sequences. A species delimitation test was performed to determine the probability of making a correct identification of an unknown specimen (sequence) based on either complete 18S rDNA or partial COI sequences; in almost all cases, the partial COI sequences were more reliable as species-specific markers than complete 18S rDNA sequences. These observations demonstrate that partial COI sequences provide more synapomorphic characters at the species level than complete 18S rDNA sequences from the same taxa. We conclude that COI performs well as a marker for the identification of coccidian taxa (Eimeriorina) and will make an excellent DNA 'barcode' target for coccidia. The COI locus, in combination with an 18S rDNA sequence as an 'anchor', has sufficient phylogenetic signal to assist in the resolution of apparent paraphylies within the coccidia and likely more broadly within the Apicomplexa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号