首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive and simple fluorimetric method for the determination of free and total polyamines, spermidine, spermine, putrescine and cadaverine, in human serum by high-performance liquid chromatography is described. The polyamines, obtained after clean-up of deproteinized serum by Cellex P column chromatography, are converted to their fluorescamine derivatives in the presence of nickel ion which inhibits the reaction of interfering amines with fluorescamine, and the derivatives are separated simultaneously by reversed-phase chromatography (LiChrosorb RP-18) with a linear gradient elution. The lower limits of detection are 10 and 5 pmole for spermine and the others in 0.5 ml of serum, respectively.  相似文献   

2.
A sensitive high-performance liquid chromatographic method for determination of intact glibenclamide in human plasma has been developed. Sample clean-up prior to chromatographic analysis was accomplished by extraction of the drug using a solid-phase RP-8 or RP-18 cartridge instead of the conventional liquid-liquid extraction methods described. For the separation of the drug from the endogenous components a reversed-phase column (LiChrosorb RP-8) of 5 μm particle size and 250×4 mm I.D., together with a mobile phase consisting of acetonitrile-12 μM perchloric acid (47:53) was selected. The method employs progesterone as an internal standard, and a reversed-phase column combined with UV detection of the drug at 230 nm. The detector response was linear up to the concentration of 400 ng/ml and the average recovery was 100.36%. The sensitivity of the method was 5 ng/ml.  相似文献   

3.
A HPLC method with automated column switching and UV detection is described for the simultaneous determination of retinol and major retinyl esters (retinyl palmitate, retinyl stearate, retinyl oleate and retinyl linoleate) in human plasma. Plasma (0.2 ml) was deproteinized by adding ethanol (1.5 ml) containing the internal standard retinyl propionate. Following centrifugation the supernatant was directly injected onto the pre-column packed with LiChrospher 100 RP-18 using 1.2% ammonium acetate–acetic acid–ethanol (80:1:20, v/v) as mobile phase. The elution strength of the ethanol containing sample solution was reduced by on-line supply of 1% ammonium acetate–acetic acid–ethanol (100:2:4, v/v). The retained retinol and retinyl esters were then transferred to the analytical column (Superspher 100 RP-18, endcapped) in the backflush mode and chromatographed under isocratic conditions using acetonitrile–methanol–ethanol–2-propanol (1:1:1:1, v/v) as mobile phase. Compounds of interest were detected at 325 nm. The method was linear in the range 2.5–2000 ng/ml with a limit of quantification for retinol and retinyl esters of 2.5 ng/ml. Mean recoveries from plasma were 93.4–96.5% for retinol (range 100–1000 ng/ml) and 92.7–96.0% for retinyl palmitate (range 5–1000 ng/ml). Inter-assay precision was ≤5.1% and ≤6.3% for retinol and retinyl palmitate, respectively. The method was successfully applied to more than 2000 human plasma samples from clinical studies. Endogenous levels of retinol and retinyl esters determined in female volunteers were in good accordance with published data.  相似文献   

4.
A fully automated liquid chromatographic method was developed for the determination of Ro 28-2653, a new synthetic inhibitor of matrix metalloproteinases (MMPs), in ovine serum and plasma. The method was based on the coupling of a pre-column packed with restricted access material, namely LiChrospher RP-8 ADS (alkyl diol silica), for sample clean-up to an analytical column containing octyl silica stationary phase. One hundred microl of biological sample, to which 2-propanol was automatically added, were injected onto the ADS pre-column, which was then washed with a washing liquid consisting of a mixture of 25 mM phosphate buffer (pH 7.0) and acetonitrile (90:10; v/v) for 10 min. By rotation of the switching valve, the analyte was then eluted in the back-flush mode with the LC mobile phase composed of a mixture of acetonitrile and 25 mM phosphate buffer (pH 7.0) (57:43; v/v). The UV detection was performed at 395 nm. The main parameters likely to influence the sample preparation technique were investigated. The method was then validated over a concentration range from 17.5 to 1950 ng/ml, the first concentration level corresponding to the lower limit of quantitation. At this concentration level, the mean bias and the R.S.D. value for intermediate precision were -2.4% and 4.2%, respectively.  相似文献   

5.
A fully automated semi-microbore high performance liquid chromatographic (HPLC) method with column-switching using UV detection was developed for the determination of glimepiride from human plasma samples. Plasma sample (900 microl) was deproteinated and extracted with ethanol and acetonitrile. The extract (70 microl) was directly injected into a Capcell Pak MF Ph-1 pre-column where the primary separation occurred to remove proteins and retain drugs using a mixture of acetonitrile and 10mM phosphate buffer (pH 2.18) (20:80, v/v). The analytes were transferred from the pre-column to an intermediate column using a switching valve and then subsequently separated on an analytical column and monitored with UV detection at 228 nm. Glimepiride was eluted with retention time 34.9 min without interference of endogenous substance from plasma. The limit of quantification (LOQ) was 10 ng/ml for glimepiride. The calibration curves were linear over the concentration range of 10-400 ng/ml (r(2) = 0.9997). Moreover, inter- and intra-day precisions of the method were less than 15% and accuracies were higher than 99%. The developed method was successfully applied for the quantification of glimepiride in human plasma and was used to support a human pharmacokinetic study following a single oral administration of 2 mg glimepiride.  相似文献   

6.
A HPLC column-switching system with LiChrospher RP-8 ADS precolumn was applied for the determination of beta-blockers (atenolol, pindolol, propranolol) in human plasma. The influence of biological matrices on the changes of the chromatographic parameters such as retention time, peak symmetry, area and selectivity were investigated. After injection of 5 ml plasma a decrease of retention times of the analytes was observed of up to 25% and an increase of asymmetry factors of up to 5%. Peak areas and selectivities were not changed. The observed effect could indicate changes of chromatographic performance caused by contributions of the analytical column or the ADS precolumn. The experiments with microdialysis excluded the contribution of the analytical column. A detailed investigation of experiments have been discussed in this paper.  相似文献   

7.
Direct injection high-performance liquid chromatographic (HPLC) methods with column switching and UV detection were developed for the rapid and accurate determination of S-1090 in human plasma and urine. An internal-surface reversed-phase pre-column and a C18 analytical column were used for the plasma assay. Two pre-columns packed with cyano and phenyl materials and a C18 analytical column were used for the urine assay. The calibration curves for plasma and urine assays were linear in the ranges 0.09–9 μg/ml and 0.5–100 μg/ml of S-1090, respectively. The relative standard deviations for plasma and urine assays were less than 6% with low relative errors. The established HPLC methods were demonstrated to be useful for clinical pharmacokinetic studies after oral administration of S-1090.  相似文献   

8.
Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. Most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.  相似文献   

9.
A high-performance liquid chromatographic method using column switching was applied to the direct determination of two local anaesthetics, ropivacaine and bupivacaine, in human plasma. The method is intended to be used in a combined LC—GC system; here only the LC-part is described. After addition of internal standard, the samples were filtered and directly injected into a semipermeable surface (SPS) pre-column where the analytes were strongly retained and separated from many endogenous compounds by a short washing step. The retained analytes were transferred by a buffered methanol phase from the pre-column into a carbonaceous HPLC column and they were detected by UV detection at 254 nm. The SPS pre-column could withstand numerous (> 200) direct injections of plasma samples (10 μl). The method has a detection limit of 8.2 ng and requires a total assay time of 15 min per plasma sample. Quantitative recoveries were obtained over the range 3.3–114 μg/ml with inter-day precisions of 1.6–5.2% (C.V.).  相似文献   

10.
A column-switching high-performance liquid chromatographic (HPLC) method is described for the determination of dapoxetine, and its mono- and di-desmethyl metabolites in human plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane—ethyl acetate. The organic extract was evaporated to dryness and the residue reconstituted with acetonitrile. The analytes were separated from late-eluting endogenous substances on a Zorbax RX-C8 pre-column. The front-cut fraction containing the analytes was further separated on a second RX-C8 column. The analytes were detected by their native fluorescence, using excitation and emission wavelengths of 230 and 330 nm, respectively. The limit of quantitation was determined to be 20 ng/ml, and the response was linear from 20 to 200 ng/ml. The method has been successfully applied to human plasma samples in a Phase I study.  相似文献   

11.
A rapid and sensitive high-performance liquid chromatographic method is described for the quantitative analysis of dipotassium clorazepate (CZP) and its major metabolite nordiazepam (ND) in fresh human and dog plasma. The method consists of two separate selective ND extractions from a plasma sample without and with conversion of all the CZP to ND. For quantitation, diazepam (DZP) is used as the internal standard. The chromatographic phase utilized in a reversed-phase Hibar® EC-RT analytical column prepacked with LiChrosolv RP-18 with a solvent system consisting of acetonitrile-0.05 M sodium acetate buffer, pH 5.0 (45:55). The UV absorbance is monitored at 225 nm using a variable-wave-length detector. The mean assay coefficient of variation over a concentration range of 20–400 ng per ml of plasma is less than 3% for the within-day precision. Recoveries of ND, DZP and CZP (as ND) are essentially quantitative at all levels investigated. The calibration curves of ND are rectilinear (r2 = 0.99) from the lower limit of sensitivity (2 ng/ml) to at least 2000 ng/ml in plasma. Applicability of the method to CZP and ND disposition studies in the anaesthetized mongrel dog is illustrated. When the two separate selective nordiazepam extractions from plasma cannot be performed immediately after blood sampling, an extrapolation kinetic method is suggested for the estimation of CZP concentration. In all previous in vivo studies, CZP has been determined only with gas-liquid chromatographic methods.  相似文献   

12.
A high-performance liquid chromatographic method for the determination of disodium dihydrogen(cycloheptylamino)methylenebisphosphonate monohydrate (YM175) in plasma, urine and bone is described. Plasma obtained in high-dose animal studies is pretreated by Method A, a simple method using 1 ml of plasma, which is based on deproteinization of plasma followed by coprecipitation of the drug with calcium phosphate and removal of excess calcium ions by AG 50W-X8 resin. Plasma obtained in lower-dose clinical studies is treated by Method B, a more sensitive method using 10 ml of plasma, which is based on solid-phase extraction using a Sep-Pak C18 cartridge coupled with Method A. Urine and bone are treated similarly to Method B. The chromatographic system consists of a mobile phase at pH 11, an alkali-stable column and an electrochemical detector operating in the oxidation mode. The determination limit is 5 ng/ml for Method A and 0.5 ng/ml for Method B in plasma, 1 ng/ml in urine, and 25 ng/g in bone.  相似文献   

13.
A fully automated technique for high-performance liquid chromatographic analysis of whole blood and plasma is described. Samples are automatically injected into a dialyser where proteins and blood cells are removed. The dialysates are concentrated on a small column prior to analysis. This technique is used for the determination of oxytetracycline in whole blood and plasma. After dialysis oxytetracycline and the internal standard, tetracycline, are retained on a polystyrene enrichment column and subsequently separated on a polystyrene analytical column by ion-pair chromatography. Using ultraviolet detection 50 ng/ml can be detected. Validation showed good within-day and between-day accuracy and precision. Different oxytetracycline concentrations were found in plasma and whole blood. This difference varied between the species.  相似文献   

14.
A sensitive and rapid high-performance liquid chromatographic method for the analysis of fluvoxamine, a selective serotonin reuptake inhibitor in human serum, is described using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent. The drug and an internal standard (fluoxetine) were extracted from 0.25 mL of serum using ethyl acetate as extracting solvent and subjected to pre-column derivatization by the reagent. A mobile phase consisting of methanol and sodium phosphate buffer (0.05 M; pH 2.8) containing 1 mL/L triethylamine (72:28 v/v) was used and chromatographic separation was performed on a Shimpack CLC-C18 (150 mm x 4.6mm) column. The fluorescence derivatives of the drugs were monitored at excitation and emission wavelengths of 470 and 537 nm, respectively. The calibration curve was linear over the concentration range of 0.5-240 ng/mL with a limit of quantification (LOQ) of 0.5 ng/mL using 0.25 mL serum sample. The method validation was performed for its selectivity, specificity, sensitivity, precision and accuracy. In this method, which was applied in a randomized cross-over bioequivalence study of two different fluvoxamine preparations in 24 healthy volunteers, the sensitivity and run time of analysis were significantly improved.  相似文献   

15.
Terbutaline is a beta-adrenergic receptor antagonist that acts as a bronchodilator in the treatment of asthma and chronic bronchitis. In the present work, a column-switching high-performance liquid chromatographic method was developed to monitor terbutaline sulphate in dog plasma. The system consists of a C2 pre-column (PC) and a C18 analytical column connected in series via a switching valve. Atenolol was used as the internal standard. Good linearity was achieved in the range of 5-800 ng/ml plasma. The mean intra- and inter-assay variation coefficients for this analysis were 2.3 and 4.7%, respectively. The average recovery for terbutaline was 87.4% from plasma. The mean concentration after three freeze-thaw cycles was 99.4% of the normal value. The analytical sensitivity and accuracy of this assay is adequate for characterisation of the pharmacokinetics of oral administration of terbutaline to dogs and has been successfully used to provide pharmacokinetic data using pulsatile and immediate-release tablets.  相似文献   

16.
The simultaneous isolation and determination of mitoxantrone (Novantrone ®) and its two known metabolites (the mono- and dicarboxylic metabolites) were carried out using a high-performance liquid chromatographic (HPLC) system equipped with an automatic pre-column-switching system that permits drug analysis by direct injection of biological samples. Plasma or urine samples were injected directly on to an enrichment pre-column flushed with methanol-water (5:95, v/v) as the mobile phase. The maximum amount of endogenous water-soluble components was removed from biological samples within 9 min. Drugs specifically adsorbed on the pre-column were back-flushed on to an analytical column (Nucleosil C18, 250x4.6 mm I.D.) with 1.6 M ammonium formate buffer (pH 4.0) (2.5% formic acid) containing 20% acetonitrile. Detection was effected at 655 nm. Chromatographic analysis was performed within 12 min. The detection limit of the method was about 4 ng/ml for urine and 10 ng/ml for plasma samples. The precision ranged from 3 to 11% depending on the amount of compound studied. This technique was applied to the monitoring of mitoxantrone in plasma and to the quantification of the unchanged compound and its two metabolites in urine from patients receiving 14 mg/m2 of mitoxantrone by intravenous infusion for 10 min.  相似文献   

17.
A gas chromatographic-mass spectrometric method is presented which allows the simultaneous determination of the plasma concentrations of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine after derivatization with the chiral reagent, (S)-(-)-N-trifluoroacetylprolyl chloride. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 10 to 750 ng/ml for racemic fluoxetine and norfluoxetine and of 50 to 500 ng/ml for fluvoxamine. Recoveries ranged from 50 to 66% for the three compounds. Intra- and inter-day coefficients of variation ranged from 4 to 10% for fluvoxamine and from 4 to 13% for fluoxetine and norfluoxetine. The limits of quantitation of the method were found to be 2 ng/ml for fluvoxamine and 1 ng/ml for the (R)- and (S)-enantiomers of fluoxetine and norfluoxetine, hence allowing its use for single dose pharmacokinetics. Finally, by using a steeper gradient of temperature, much shorter analysis times are obtained if one is interested in the concentrations of fluvoxamine alone.  相似文献   

18.
A simple and rapid high-pressure liquid chromatographic procedure is reported for the simultaneous quantitative determination of propranolol and 4-hydroxypropranolol in plasma. Following an extraction the samples are chromatographed on a reversed-phase column and the components in the column effluent are detected by fluorescence monitoring. Using 1-ml plasma samples propranolol and 4-hydroxypropranolo concentrations at least as low as 1 ng/ml and 5 ng/ml, respectively, can be quantitated. The reproducibility of the method is satisfactory and no interference from endogenous plasma components or other drugs has been observed. A single plasma sample can be analyzed in approximately 20 min.  相似文献   

19.
A rapid clean-up and high-performance liquid chromatographic method for the simultaneous determination of ormethoprim and sulphadimethoxine in plasma and muscle of Atlantic salmon (Salmo salar) has been developed. Sample preparation is based on protein precipitation using trichloroacetic acid or methanol for plasma and muscle, respectively. The drugs are separated using a reversed-phase C18 analytical column and phosphate buffer—acetonitrile (80:20, v/v) containing 1-heptanesodiumsulphonate and triethylamine, as mobile phase. Detection was performed at 270 nm. The average recovery of ormethoprim was 97.2% in muscle and 95.7% in plasma, whereas the average recovery of sulphadimethoxine was 86.5% in muscle and 90.2% in plasma. The limit of detection at a signal-to-noise ratio of 3 was 50 ng/g and 30 ng/ml for ormethoprim in muscle and plasma respectively and 30 ng/g and 15 ng/ml in muscle and plasma respectively for sulphadimethoxine.  相似文献   

20.
A combination of two stereoselective assays was developed using column-switching HPLC with electrochemical detection for the determination of free (unconjugated) silibinin and RP-HPLC with UV detection for the measurement of total (free and conjugated) silibinin in human plasma. After extraction of free silibinin and the internal standard hesperetin with diethyl ether the compounds were pre-separated on a RP-CN column. A cut fraction of eluate containing the analytes was then transferred to the RP-18 main column by means of a switching valve for final separation of the compounds. The limit of quantification with electrochemical detection for free silibinin was 0.25 ng/ml per diastereomer. For the determination of total silibinin diastereomers all conjugates were cleaved enzymatically using β-glucuronidase/arylsulfatase at pH 5.6 followed by extraction with diethyl ether of the pH 8.5 alkalized solution. Separation of the diastereomers and of the internal standard naringenin was achieved on a RP-18 column. The limit of quantification with UV detection at 288 nm for total silibinin was 5 ng/ml per diastereomer. Both assays were successfully applied to the stereospecific analysis of silibinin in plasma samples from a pharmacokinetic study of silymarin in human volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号