首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive column-switching high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of propiverine in human plasma. Propiverine and internal standard, oxybutynin, were extracted from human plasma that had been made basic with 5N sodium hydroxide into methyl tert-butyl ether. The extracted plasma sample was injected onto the HPLC system consisting of a pretreatment column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The assay was linear in concentration ranges of 2-200 ng/ml for propiverine in human plasma. This method showed excellent sensitivity (a limit of detection of 0.5 ng/ml), good precision and accuracy. This method is suitable for bioequivalence studies following single dose in healthy volunteers.  相似文献   

2.
Gemcitabine (dFdC) is a pyrimidine antimetabolite with broad spectrum activity against tumors. In this paper, a normal-phase high-performance liquid chromatographic method was developed for the determination of the parent drug (dFdC) and its metabolite (dFdU) in human plasma. The described sample preparation procedure for determination of dFdC and dFdU is rapid, sensitive, reproducible and simple. The linear regression equations obtained by least square regression method, were area under the curve=0.0371 concentration (ng ml(-1))+192.53 and 1.05.10(-4) concentration (ng ml(-1))-1.2693 for dFdC and dFdU, respectively. The assay for dFdC and dFdU described in the present report has been applied to plasma samples from a bladder cancer patient.  相似文献   

3.
A highly sensitive and simple isocratic high-performance liquid chromatography method was developed for determination of 3-nitrotyrosine in human plasma with precolumn derivatization with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole. The precision of the method was satisfactory (coefficient of variation 4.8%), and the detection limit was established at 0.1 pmol of 3-nitrotyrosine allowing the determination at the level of 6 pmol/ml in human plasma. The recoveries of 3-nitrotyrosine and α-methyltyrosine, an internal standard, were 89.3 +-7.1 and 85.7±7.6%, respectively. The 3-nitrotyrosine level was 31±6 pmol/ml (mean±S.D., n=9) in plasma from healthy volunteers. Since 3-nitrotyrosine is a stable product of peroxynitrite, an oxidant formed by a reaction of nitric oxide and superoxide radicals, the measurement of its plasma concentration may be useful as a marker of nitric oxide-dependent oxidative damage.  相似文献   

4.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.  相似文献   

5.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylarniodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether—acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol—acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol–25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay.The limit of sensitivity of the assay was 0.025 μg/ml with a precision of ± 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

6.
7.
A reversed-phase, high-performance liquid chromatographic method using UV detection is described for the assay of the major metabolite of phentolamine in plasma and urine before or after enzymatic hydrolysis. Plasma is deproteinized with methanol. The sensitivity limit is 200 ng/ml using 150-μl samples. Urine is either diluted with water or purified after enzymatic hydrolysis. Concentrations down to 2–3 μg/ml could be quantified with acceptable precision. This method was applied to plasma and urine samples from subjects given phentolamine.  相似文献   

8.
Several methods for quantification of docetaxel have been described mainly using HPLC. We have developed a new isocratic HPLC method that is as sensitive and simpler than previous methods, and applicable to use in clinical pharmacokinetic analysis. Plasma samples are spiked with paclitaxel as internal standard and extracted manually on activated cyanopropyl end-capped solid-phase extraction columns followed by isocratic reversed-phase HPLC and UV detection at 227 nm. Using this system, the retention times for docetaxel and paclitaxel are 8.5 min and 10.5 min, respectively, with good resolution and without any interference from endogenous plasma constituents or docetaxel metabolites at these retention times. The total run time needed is only 13 min. The lower limit of quantification is 5 ng/ml using 1 ml of plasma. The validated quantitation range of the method is 5–1000 ng/ml with RSDs≤10%, but plasma concentrations up to 5000 ng/ml can be accurately measured using smaller aliquots. This method is also suitable for the determination of docetaxel in urine samples under the same conditions. The method has been used to assess the pharmacokinetics of docetaxel during a phase I/II study of docetaxel in combination with epirubicin and cyclophosphamide in patients with advanced cancer.  相似文献   

9.
A new sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the determination of 2-phenylethylamine (PEA) in human urine. The analytical procedure involved a simple extraction of the analyte from urine, followed by precolumn derivatisation of the sample with o-phthalaldehyde. The HPLC separation was performed under isocratic conditions using an Erbasil S C18 (250 × 4.0 mm I.D., particle size 3 μm) reversed-phase column. The limit of quantification was 0.5 ng of PEA/ml of urine. The method showed good linearity, accuracy and precision data in the concentration range 0.5–200 ng/ml of urine. The method was successfully applied to the determination of PEA urinary excretion in Parkinsonian patients after oral administration of the monoamine oxidase B (MAO-B) inhibitor, selegiline.  相似文献   

10.
A sensitive high-performance liquid chromatographic method is described for the quantification of midazolam and 1′-hydroxymidazolam in human plasma. Sample (1 ml plasma) preparation involved a simple solvent extraction step with a recovery of approximately 90% for both compounds. An aliquot of the dissolved residue was injected onto a 3 μm capillary C18 column (150 mm×0.8 mm I.D.). A gradient elution was used. The initial mobile phase composition (phosphate buffer–acetonitrile, 65:35) was maintained during 16 min and was then changed linearly during a 1-min period to phosphate buffer–acetonitrile, 40:60. The flow-rate of the mobile phase was 16 μl/min and the eluate was monitored by UV detection. The limits of quantification for midazolam and 1′-hydroxymidazolam were 1 ng/ml and 0.5 ng/ml, respectively. The applicability of the method was demonstrated by studying the pharmacokinetics of midazolam, and its major metabolite 1′-hydroxymidazolam, in human volunteers following i.v. bolus administration of a subtherapeutic midazolam dose (40 μg/kg).  相似文献   

11.
A rapid, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of clarithromycin in human plasma. Liquid-liquid extraction of clarithromycin and norverapamil (as internal standard) from plasma samples was performed with n-hexane/1-butanol (98:2, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a CN column (250 mm x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (32:68, v/v), pH 4.5. Detection was made at 205 nm and analyses were run at a flow-rate of 1.0 ml/min at 40 degrees C. The analysis time was less than 11 min. The method was specific and sensitive with a quantification limit of 31.25 ng/ml and a detection limit of 10 ng/ml in plasma. The mean absolute recovery of clarithromycin from plasma was 95.9%, while the intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 9.5%. Linearity was assessed in the range of 31.25-2000 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method was used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

12.
A high-performance liquid chromatographic method was developed for the quantification of doxorubicin derived from PEGylated liposomal doxorubicin (Doxil) and its major metabolite in human plasma. This method utilizes Triton X-100 to disperse the liposome, followed by a protein precipitation step with 5-sulfosalicylic acid. Analytes in the resultant supernatant are separated on a Discovery RP amide C(16) column (250 x 3 mm I.D., 5 microm) using an isocratic elution with a mobile phase consisting of 0.05 M sodium acetate (pH 4.0) and acetonitrile (72:28). The retention times for doxorubicin and the internal standard daunorubicin were 4.8 and 10.1 min, respectively. The column eluate was monitored by UV-visible detection at 487 nm. The determination of doxorubicin was found to be linear in the range of 1.0 ng/mL to 25 microg/mL, with intra-day and inter-day coefficients of variation and percent error < or =10%. The recovery of doxorubicin from plasma was >69.3%, with a liposomal dispersion efficiency of >95.7%. Our analytical method for free and PEGylated doxorubicin in human plasma is rapid, avoids organic extractions, and maintains sensitivity for the parent compound and its major metabolite, doxorubicinol.  相似文献   

13.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

14.
A simple, specific, and sensitive high-performance liquid chromatographic (HPLC) method for the determination of riboflavin directly in urine samples using a fixed-wave-length spectrofluorometer is described. Centrifuged raw urine samples (50 μl) are injected onto a reversed-phase microparticulate C18 column. The eluent is 0.01 M KH2PO4 (pH 5.0)—methanol (65:35). This method is capable of differentiating riboflavin from riboflavin-5-phosphate, non-riboflavin fluorescing components in urine, and photo-degraded riboflavin. The method shows good reproducibility and is linear to at least 12 μg/ml. The sensitivity of this procedure, at the 95% confidence limit, determined by linear regression analysis, is estimated to be 0.05 μg/ml using peak height and 0.07 μg/ml using peak area. This HPLC method is compared to an automated fluorometric method for riboflavin. The coefficient of linear regression of this comparison is Y = 0.858 + 0.893X, where X is the HPLC method and Y is the fluorometric method.  相似文献   

15.
A robust, fully automated assay procedure for the determination of rosiglitazone (I, BRL-49653) in human plasma has been developed. Plasma concentrations of I were determined using automated sequential trace enrichment of dialysates (ASTED) coupled to reversed-phase high-performance liquid chromatography. Sequential automated dialysis of human plasma samples was followed by concentration of the dialysate by trace enrichment on a C18 cartridge. Drug and internal standard, SB-204882 (II) were eluted from the trace enrichment cartridge by mobile phase (0.01 M ammonium acetate, pH 8–acetonitrile, 65:35, v/v) onto the HPLC column (a Novapak C18, 4 μm, 100×5 mm radial compression cartridge) protected by a Guard-Pak C18 cartridge. The compounds were detected by fluorescence detection, using an excitation wavelength of 247 nm, and emission wavelength of 367 nm. The lower limit of quantitation of the method was 3 ng/ml (200 μl aliquot) with linearity demonstrated up to 100 ng/ml. Within- and between-run precision and accuracy of determination were better than 10% across the calibration range. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can be safely stored for at least 7 months at −20°C. This method has been successfully utilised to provide pharmacokinetic data throughout the clinical development of rosiglitazone.  相似文献   

16.
We report a quantitative assay of 5-fluorouracil (FU) and its metabolite, 5-fluorodihydrouracil (FDHU) in human urine by used a column-switching high-performance liquid chromatographic method. The analyses were carried out using a molecular exclusion column for sample purification, and a cation-exchange column for separation. Each sample required only 40 min to analyze, and required no preparation other than filtration. Linearity was verified up to 1000 nmol/ml (r>0.993). The recovery of FU was 96–101%; recovery of FDHU was 96–105%. The imprecision (RSD) for FU (10–100 nmol/ml) was <1.5%, same-day (n=5), and <1.8%, day-to-day (n=5). The imprecision (RSD) for FDHU (10–100 nmol/ml) was <3.2%, same-day (n=5), and <4.0%, day-to-day (n=5). The detection limits were, respectively, 0.1 nmol/ml. We measured FU and FDHU in urine of seven cancer patients after oral administration of FU. The cumulative quantity ratio of the FDHU and FU (FDHU/FU) excreted in their urine within 120 min after FU administration was a constant value in all seven patients. Based on these results, we believe that our method provides a useful tool for evaluating FU metabolism.  相似文献   

17.
A column-switching high-performance liquid chromatographic method was developed for the determination of vincristine in serum. Sample preparation was carried out by means of on-line column-extraction, using a C18 reversed-phase preconcentration column. This technique is simple (minimizing manual sampling errors), rapid (reduction of time and costs) and can be easily automated. Both ultraviolet and electrochemical detection are possible, but the latter shows a cleaner chromatogram and is, by the use of a new electrochemical detector, far more sensitive (detection limit 0.3 μg/l at a signal-to-noise ratio of 3). A matrix study was carried out (using human serum and urine and two kinds of calf's serum). Although it appeared that the system was matrix-dependent, no difference in matrix effects could be found in the serum or plasma of different patients. Controls for human serum analysis should be prepared in human serum. With the method described, pharmacokinetic studies of vincristine in children can be performed.  相似文献   

18.
A simple and reproducible method for the determination of zolpidem in human plasma is presented. This method involves protein precipitation with methanol (2 ml of methanol are added to 0.5 ml of plasma) and reversed-phase chromatography with fluorescence detection (excitation wavelength 244 nm, emission wavelength 388 nm). The mobile phase consists of methanol–30 mM dihydrogen potassium phosphate–triethylamine (30:69:1). pH of the aqueous part of the mobile phase is 6.8. No internal standard is required. Limit of quantitation is 1.5 ng/ml and the calibration curve is linear up to 400 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy also does not exceed 9%. The assay is useful for pharmacokinetic studies.  相似文献   

19.
20.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号