首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear‐encoded plastid‐localized proteins contain N‐terminal bipartite targeting peptides with the conserved amino acid sequence motif ‘ASAFAP’. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear‐encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved ‘ASAFAP’ motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid‐localized proteins with both high sensitivity and high specificity. To identify nucleus‐encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full‐length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae.  相似文献   

2.
Cell adhesion molecules (CAMs) are important in prokaryotes and eukaryotes for cell–cell and cell–substratum interactions. The characteristics of adhesive proteins in the model diatom Phaeodactylum tricornutum were investigated by bioinformatic analysis and in vivo characterization. Bioinformatic analysis of the protein coding potential of the P. tricornutum genome used an amino‐acid profile that we developed as a new system to identify uncharacterized or novel CAMs. Putative diatom CAMs were identified and seven were characterized in vivo, by generation of transgenic diatom lines overexpressing genes encoding C‐terminal yellow fluorescent protein (YFP) fusion proteins. Three of these selected genes encode proteins with weak similarity to characterized proteins, a c‐type lectin and two fasciclins, whereas the others are novel. The resultant cell lines were investigated for alterations in their adhesive ability. Whole cell‐substratum adhesion strength was measured in a fully turbulent flow chamber, while atomic force microscopy was used to quantify the relative frequency of adhesion, as well as the length and strength of single molecules in the secreted mucilage. Finally, quartz crystal microbalance analysis characterized the visco‐elastic properties and interaction of the mucilage–substratum interface. These combined studies revealed a range of phenotypes affecting adhesion, and led to the identification of candidate proteins involved in diatom adhesion. In summary, our study has for the first time combined bioinformatics and molecular physiological studies to provide new insights into diatom adhesive molecules.  相似文献   

3.
4.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

5.
In many marine ecosystems, diatoms dominate in nutrient‐rich coastal waters while coccolithiophores are found offshore in areas where nutrients may be limiting. In lab‐controlled batch cultures, mixed‐species competition between the diatom Phaeodactylum tricornutum and the coccolithophore Emiliana huxleyi and the response of each species were examined under nitrate (N) and phosphate (P) starvation. Based on the logistic growth model and the Lotka–Volterra competition model, E. huxleyi showed higher competitive abilities than P. tricornutum under N and P starvation. For both species, cell growth was more inhibited by P starvation, while photosynthetic functions (chl a fluorescence parameters) and cellular constituents (pigments) were impaired by N starvation. The decline of photosynthetic functions occurred later in E. huxleyi (day 12) than in P. tricornutum (day 9); this time difference was associated with greater damage of the photosynthetic apparatus in P. tricornutum compared with E. huxleyi. Xanthophyll cycle pigment accumulation and the transformation from diadinoxanthin to diatoxanthin was more active in E. huxleyi than P. tricornutum, under similar N and P starvation. We concluded that E. huxleyi and P. tricornutum have different mechanisms to allocate resources and energy under nutrient starvation. It appears that E. huxleyi has a more economic strategy to adapt to nutrient depleted environments than P. tricornutum. These findings provided additional evidence explaining how N versus P limitation differentially support diatom and coccolithophore blooms in natural environments.  相似文献   

6.
Diatoms are unicellular photoautotrophic algae, which can be found in any aquatic habitat. The main storage carbohydrate of diatoms is chrysolaminarin, a nonlinear β‐glucan, consisting of a linear 1,3‐β‐chain with 1,6‐β‐branches, which is stored in cytoplasmic vacuoles. The metabolic pathways of chrysolaminarin synthesis in diatoms are poorly investigated, therefore we studied two potential 1,6‐β‐transglycosylases (TGS) of the diatom Phaeodactylum tricornutum which are similar to yeast Kre6 proteins and which potentially are involved in the branching of 1,3‐β‐glucan chains by adding d ‐glucose as 1,6‐side chains. We genetically fused the full‐length diatom TGS proteins to GFP and expressed these constructs in P. tricornutum, demonstrating that the enzymes are apparently located in the vacuoles, which indicates that branching of chrysolaminarin may occur in these organelles. Furthermore, we demonstrated the functionality of the diatom enzymes by expressing TGS1 and 2 proteins in yeast, which resulted in a partial complementation of growth deficiencies of a transglycosylase‐deficient ?kre6 yeast strain.  相似文献   

7.
Diatoms (Bacillarophyceae) are photosynthetic unicellular microalgae that have risen to ecological prominence in oceans over the past 30 million years. They are of interest as potential feedstocks for sustainable biofuels. Maximizing production of these feedstocks will require genetic modifications and an understanding of algal metabolism. These processes may benefit from genome‐scale models, which predict intracellular fluxes and theoretical yields, as well as the viability of knockout and knock‐in transformants. Here we present a genome‐scale metabolic model of a fully sequenced and transformable diatom: Phaeodactylum tricornutum. The metabolic network was constructed using the P. tricornutum genome, biochemical literature, and online bioinformatic databases. Intracellular fluxes in P. tricornutum were calculated for autotrophic, mixotrophic and heterotrophic growth conditions, as well as knockout conditions that explore the in silico role of glycolytic enzymes in the mitochondrion. The flux distribution for lower glycolysis in the mitochondrion depended on which transporters for TCA cycle metabolites were included in the model. The growth rate predictions were validated against experimental data obtained using chemostats. Two published studies on this organism were used to validate model predictions for cyclic electron flow under autotrophic conditions, and fluxes through the phosphoketolase, glycine and serine synthesis pathways under mixotrophic conditions. Several gaps in annotation were also identified. The model also explored unusual features of diatom metabolism, such as the presence of lower glycolysis pathways in the mitochondrion, as well as differences between P. tricornutum and other photosynthetic organisms.  相似文献   

8.
The extracellular matrix of the ovoid and fusiform morphotypes of Phaeodactylum tricornutum (Bohlin) was characterized in detail. The structural and nanophysical properties were analyzed by microscopy. Of the two morphotypes, only the ovoid form secretes adhesive mucilage; light microscopy and scanning electron microscopy images showed that the mucilage was secreted from the girdle band region of the cell as cell‐substratum tethers, accumulating on the surface forming a biofilm. After 7 d, the secreted mucilage became entangled, forming adhesive strands that crisscrossed the substratum surface. In the initial secreted mucilage atomic force microscopy identified a high proportion of adhesive molecules without regular retraction curves and some modular‐like adhesive molecules, in the 7 d old biofilm, the adhesive molecules were longer with fewer adhesive events but greater adhesive strength. Chemical characterization was carried out on extracted proteins and polysaccharides. Differences in protein composition, monosaccharide composition, and linkage analysis are discussed in relation to the composition of the frustule and secreted adhesive mucilage. Polysaccharide analysis showed a broad range of monosaccharides and linkages across all fractions with idiosyncratic enrichment of particular monosaccharides and linkages in each fraction. 3‐linked Mannan was highly enriched in the cell frustule fractions indicating a major structural role, while Rhamnose and Fucose derivatives were enriched in the secreted fractions of the ovoid morphotype suggesting involvement in cell adhesion. Comparison of SDS‐PAGE of extracellular proteins showed two major bands for the ovoid morphotype and four for the fusiform morphotype of which only one appeared to be common to both morphotypes.  相似文献   

9.
Larval settlement in the marine polychaete Hydroides elegans is effectively mediated upon contact with the surface of marine bacterial films. Using the bacterium Roseobacter litoralis as a model strain, the effect of bacterial extracellular polymers (exopolymers) on larval settlement of H. elegans was investigated. Bioassays with exopolymer fractions dissociated from bacterial films evoked the initial stages of the larval settlement process, i.e. larvae slowed down, secreted a mucous thread and crawled over the surface. This response is typical of larvae that encounter an attractive bacterial film. In contrast, bioassays with exopolymers in association with UV‐irradiated, metabolically inactive bacterial films evoked complete settlement. However, the percentage of responding larvae was negatively correlated with the magnitude of UV‐dosage. Since UV energy crosslinks both intra‐ and extracellular proteinaceous components, it could not be distinguished whether the decrease in larval settlement was due to a modification of proteinaceous components of exopolymers or due the elimination of cellular activity. Nevertheless, the results ascribe bacterial exopolymers the role of an indicator of substratum suitability and provide evidence that the polysaccharide moiety of exopolymers does not complement this effect.  相似文献   

10.
Iron is a limiting factor that controls the phytoplankton biomass in the modern ocean, and iron fertilization of the ocean could lead to blooms dominated by diatoms. Thus, iron plays an important role in controlling the distribution of diatoms. In this study, we measured the growth rate and photosynthetic activity of the model diatom Phaeodactylum tricornutum cultured under different iron concentrations and found that it grew more rapidly and had a much higher photosynthetic efficiency under higher iron concentrations. In order to explore the unique mechanism of the response of diatoms to iron, a proteomic analysis was carried out, and the results indicated that iron promotes the Calvin cycle of P. tricornutum. Diatoms can tolerate the pressure of iron limitation by replacing iron‐rich proteins with flavodoxin, and so on. Moreover, we found that the photosystem I (PSI) activity of iron‐limited algae that were treated by N’,N’,N’,N’‐tetramethyl‐p‐phenylenediamine (TMPD) was increased significantly. As TMPD plays the role of a cytochrome b6/f complex that transfers electrons from photosystem II to PSI, the cytochrome b6/f complex is the key to photosynthesis regulation. Iron could influence the growth of P. tricornutum by regulating its biosynthesis. All of the results suggest that iron might affect the growth of diatoms through the Calvin cycle and the cytochrome b6/f complex.  相似文献   

11.
Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC‐homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst‐forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss‐of‐function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild‐type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin‐tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD‐mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD‐dependent pathway.  相似文献   

12.
Interactions between marine diatoms and bacteria have been studied for decades. However, the visualization of physical interactions between these diatoms and their colonizers is still limited. To enhance our understanding of these specific interactions, a new Thalassiosira rotula isolate from the North Sea (strain 8673) was characterized by scanning electron microscopy and confocal laser scanning microscopy (CLSM) after staining with fluorescently labeled lectins targeting specific glycoconjugates. To investigate defined interactions of this strain with bacteria the new strain was made axenic and co-cultivated with a natural bacterial community and in two- or three-partner consortia with different bacteria of the Roseobacter group, Gammaproteobacteria and Bacteroidetes. The CLSM analysis of the consortia identified six out of 78 different lectins as very suitable to characterize glycoconjugates of T. rotula. The resulting images show that fucose-containing threads were the dominant glycoconjugates secreted by the T. rotula cells but chitin and to a lesser extent other glycoconjugates were also identified. Bacteria attached predominantly to the fucose glycoconjugates. The colonizing bacteria showed various attachment patterns such as adhering to the diatom threads in aggregates only or attaching to both the surfaces and the threads of the diatom. Interestingly the colonization patterns of single bacteria differed strikingly from those of bacterial co-cultures, indicating that interactions between two bacterial species impacted the colonization of the diatom. Our observations help to better understand physical interactions and specific colonization patterns of distinct bacterial mono- and co-cultures with an abundant diatom of costal seas.  相似文献   

13.
The testicans are a three‐member family of secreted proteoglycans structurally related to the BM‐40/secreted protein acidic and rich in cystein (SPARC) osteonectin family of extracellular calcium‐binding proteins. In vitro studies have indicated that testicans are involved in the regulation of extracellular protease cascades and in neuronal function. Here, we describe the biochemical characterization and tissue distribution of mouse testican‐3 as well as the inactivation of the corresponding gene. The expression of testican‐3 in adult mice is restricted to the brain, where it is located diffusely within the extracellular matrix, as well as associated with cells. Brain‐derived testican‐3 is a heparan sulphate proteoglycan. In cell culture, the core protein is detected in the supernatant and the extracellular matrix, whereas the proteoglycan form is restricted to the supernatant. This indicates possible interactions of the testican‐3 core protein with components of the extracellular matrix which are blocked by addition of the glycosaminoglycan chains. Mice deficient in testican‐3 are viable and fertile and do not show an obvious phenotype. This points to a functional redundancy among the different members of the testican family or between testican‐3 and other brain heparan sulphate proteoglycans.  相似文献   

14.
Studies on the long‐term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population of the model diatom Phaeodactylum tricornutum, after growing under elevated CO2 (1000 μatm, HCL, pHT: 7.70) for 1860 generations, showed significant differences in photosynthesis and growth from a population maintained in ambient CO2 and then transferred to elevated CO2 for 20 generations (HC). The HCL population had lower mitochondrial respiration, than did the control population maintained in ambient CO2 (400 μatm, LCL, pHT: 8.02) for 1860 generations. Although the cells had higher respiratory carbon loss within 20 generations under the elevated CO2, being consistent to previous findings, they downregulated their respiration to sustain their growth in longer duration under the OA condition. Responses of phytoplankton to OA may depend on the timescale for which they are exposed due to fluctuations in physiological traits over time. This study provides the first evidence that populations of the model species, P. tricornutum, differ phenotypically from each other after having been grown for differing spans of time under OA conditions, suggesting that long‐term changes should be measured to understand responses of primary producers to OA, especially in waters with diatom‐dominated phytoplankton assemblages.  相似文献   

15.
16.
Phototrophic epilithic biofilms harbour a distinct assemblage of heterotrophic bacteria, cyanobacteria and photoautotrophic algae. Secretion of extracellular polymeric substances (EPS) by these organisms and the physicochemical properties of the EPS are important factors for the development of the biofilms. We have isolated representative diatom and bacteria strains from epilithic biofilms of Lake Constance. By pairwise co-cultivating these strains we found that diatom growth and EPS secretion by diatoms may depend on the presence of individual bacteria. Similar results were obtained after addition of spent bacterial medium to diatom cultures, suggesting that soluble substances from bacteria have an impact on diatom physiology. While searching for putative bacterial signal substances, we found that concentrations of various dissolved free amino acids (DFAA) within the diatom cultures changed drastically during co-cultivation with bacteria. Further, the secretion of extracellular carbohydrates and proteins can be influenced by bacteria or their extracellular substances. We have performed mass spectrometric peptide mapping to identify proteins which are secreted when co-cultivating the diatom Phaeodactylum tricornutum Bohlin and Escherichia coli. The identified proteins are possibly involved in signalling, extracellular carbohydrate modification and uptake, protein and amino acid modification, and cell/cell aggregation of diatom and bacteria strains. Our data indicate that diatom-bacteria biofilms might be regulated by a complex network of chemical factors involving EPS, amino acid monomers and other substances. Thus interactions with bacteria can be considered as one of the main factors driving biofilm formation by benthic diatoms.  相似文献   

17.
In the last few years, genome‐based studies in diatoms have received a major boost following the genome sequencing of the centric species Thalassiosira pseudonana Hasle et Heimdal and the pleiomorphic raphid pennate diatom Phaeodactylum tricornutum Bohlin. In addition, molecular tools, such as genetic transformation, have been developed for both species. Despite these molecular advances, relatively little is known regarding the genetic diversity of the available strains of these diatoms. In this study, we have compiled a historical summary of the known P. tricornutum species resources and have provided a genetic and phenotypic overview of 10 different axenic strains. Examination of intraspecies genetic diversity based on internal transcribed spacer 2 (ITS2) sequence and amplified fragment length polymorphism (AFLP) analyses indicate four different genotypes. Seven strains are predominantly fusiform, whereas one strain is predominantly oval, and another is predominantly triradiate. Another is defined as a tropical strain because it appears better acclimated to growth at higher temperatures. Observations in the natural environment indicate that P. tricornutum is a coastal marine diatom that is able to adapt to unstable environments, such as estuaries and rock pools. Because it has rarely been noted in nature, we have developed specific primers to amplify ITS2 sequences and have successfully identified it in environmental samples. These resources should become useful tools for the diatom community when combined with the whole genome sequence and will open up a range of new possibilities for experimental investigations that can exploit the genotypic and phenotypic characteristics described.  相似文献   

18.
Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography–tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin‐like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20°C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity.  相似文献   

19.
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv/Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross‐section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv/Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N‐limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure.  相似文献   

20.
Recent molecular studies on magnetotactic bacteria have identified a number of proteins associated with bacterial magnetites (magnetosomes) and elucidated their importance in magnetite biomineralisation. However, these analyses were limited to magnetotactic bacterial strains belonging to the α‐subclass of Proteobacteria. We performed a proteomic analysis of magnetosome membrane proteins in Desulfovibrio magneticus strain RS‐1, which is phylogenetically classified as a member of the δ‐Proteobacteria. In the analysis, the identified proteins were classified based on their putative functions and compared with the proteins from the other magnetotactic bacteria, Magnetospirillum magneticum AMB‐1 and M. gryphiswaldense MSR‐1. Three magnetosome‐specific proteins, MamA (Mms24), MamK, and MamM, were identified in strains RS‐1, AMB‐1, and MSR‐1. Furthermore, genes encoding ten magnetosome membrane proteins, including novel proteins, were assigned to a putative magnetosome island that contains subsets of genes essential for magnetosome formation. The collagen‐like protein and putative iron‐binding proteins, which are considered to play key roles in magnetite crystal formation, were identified as specific proteins in strain RS‐1. Furthermore, genes encoding two homologous proteins of Magnetococcus MC‐1 were assigned to a cryptic plasmid of strain RS‐1. The newly identified magnetosome membrane proteins might contribute to the formation of the unique irregular, bullet‐shaped crystals in this microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号