首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Brevetoxin (PbTx) is a neurotoxic secondary metabolite of the dinoflagellate Karenia brevis. We used a novel, fluorescent BODIPY‐labeled conjugate of brevetoxin congener PbTx‐2 (B‐PbTx) to track absorption of the metabolite into a variety of marine microbes. The labeled toxin was taken up and brightly fluoresced in lipid‐rich regions of several marine microbes including diatoms and coccolithophores. The microzooplankton (20–200 μm) tintinnid ciliate Favella sp. and the rotifer Brachionus rotundiformis also took up B‐PbTx. Uptake and intracellular fluorescence of B‐PbTx was weak or undetectable in phytoplankton species representative of dinoflagellates, cryptophytes, and cyanobacteria over the same (4 h) time course. The cellular fate of two additional BODIPY‐conjugated K. brevis associated secondary metabolites, brevenal (B‐Bn) and brevisin (B‐Bs), were examined in all the species tested. All taxa exhibited minimal or undetectable fluorescence when exposed to the former conjugate, while most brightly fluoresced when treated with the latter. This is the first study to observe the uptake of fluorescently‐tagged brevetoxin conjugates in non‐toxic phytoplankton and zooplankton taxa, demonstrating their potential in investigating whether marine microbes can serve as a significant biological sink for algal toxins. The highly variable uptake of B‐PbTx observed among taxa suggests some may play a more significant role than others in vectoring lipophilic toxins in the marine environment.  相似文献   

3.
Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguineaAmoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguineaEctocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host‐specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.  相似文献   

4.
It has been 55 years since Hugo Freudenthal described Symbiodinium microadriaticum (Dinophyceae), the type species of this large and important dinoflagellate genus found commonly in mutualistic symbiosis with cnidarians, other invertebrates, and certain protists. However, no type specimen was designated by Freudenthal, thus S. microadriaticum was invalid, as was Symbiodinium and every species subsequently assigned to the genus. The original culture was lost, but since 1979, a different culture, CCMP2464/rt‐061, had been considered to represent S. microadriaticum. From this culture, a preserved specimen is herein designated the holotype of S. microadriaticum, validating the binomial and Symbiodinium. All binary designations previously considered to belong in Symbiodinium also are validated herein.  相似文献   

5.
Coral reefs are increasingly threatened by disease outbreaks, which affect the coral animal and/or its algal symbionts (Symbiodinium spp.) and can cause mass mortalities. Currently around half of the recognized coral diseases have unknown causative agents. While many of the diseases are thought to be bacterial in origin, there is growing evidence that viruses may play a role. In particular, it appears that viruses may infect the algal symbionts, causing breakdown of the coral‐algal mutualism. In this study, we screened a wide range of Symbiodinium cultures in vitro for the presence of latent viral infections. Using flow cytometry and electron microscopy, we found that many types of Symbiodinium apparently harbor such infections, and that the type of putative virus varied within and among host types. Furthermore, the putative viral infections could be induced via abiotic stress and cause host cell lysis and population decline. If similar processes occur in Symbiodinium cells in hospite, they may provide an explanation for some of the diseases affecting corals and other organisms forming symbioses with these algae.  相似文献   

6.
Knowledge concerning the ability of microalgae to produce metabolites of interest such as toxins or high‐value secondary metabolites requires exhaustive details to be supplied on how the research was conducted. These should include the microalgal species and strain characterization, the culture conditions, the cell density, and physiological state at the time of harvesting, the harvesting method, the sample pre‐treatment protocol, and the subsequent instrumental analytical separation/detection system. In this comment, we discuss issues that affect algal research from an analytical chemistry perspective, particularly (i) the need to specify detection capabilities of the entire method (i.e., limits of detection or threshold detection levels), which we illustrate in relation to classification of a species or strain as being “toxin producing” or “non‐toxin producing”; and (ii) the requirements that have to be satisfied to confirm a microalgal species (new or not) as a producer of a particular chemical of interest for phycologists, which again we illustrate in relation to toxins. A successful collaboration among phycologists and analytical chemists will only be achieved as a result of a synergistic collaboration between the two disciplines, with a reciprocal understanding at least at a background level.  相似文献   

7.
8.
The global distribution of phytoplankton is defined by many events, including long‐term evolutionary processes and shorter time span processes (e.g., global climate change). Furthermore, human‐assisted, unintentional dispersion, including the transport of live fish and spat for aquaculture, and transfer of aquatic microorganisms contained in ship ballast water, may aid the spread of phytoplankton. To understand the phylogeographic history of a species, the development of useful molecular markers is crucial. We previously reported a hypervariable mitochondrial gene in the cosmopolitan bloom‐forming alga, Heterosigma akashiwo. In this study, we identified two additional hypervariable segments in the H. akashiwo mitochondrial genome, one a protein coding sequence, and the other an intergenic region, by comparing the whole mitogenomes of strains obtained from various geographic origins. Interestingly, the newly identified hypervariable protein coding sequence was a paralogue of the previously identified gene, and both sequences showed tendencies to correlate with latitude of geographic origin. However, the hypervariable intergenic sequence did not show a clear correlation with origin. Our results demonstrated that the protein coding sequences may serve as useful tools for understanding the phylogeographic history of H. akashiwo, and they may crucially function in adaptation of the species to the environment.  相似文献   

9.
We report on morphological observations, phylogenetic analyses, bloom dynamics, and ichthyotoxicity of the common but poorly characterized dinoflagellate Pheopolykrikos hartmannii (Zimmermann) Matsuoka et Fukuyo. From 2008 to 2010 in the Forge River Estuary, NY, USA, P. hartmannii bloomed during summer and early fall, achieving densities exceeding 8,000 cells · mL?1 and often dominating microphytoplankton communities. Large subunit (LSU) and small subunit (SSU) rDNA sequences demonstrated that NY isolates of P. hartmannii sequences were 99%–100% identical to P. hartmannii isolates from eastern US and Korea. In both the LSU and SSU rDNA phylogenies, the clades containing P. hartmannii sequences were distinct sister clades to those composed of Polykrikos schwartzii and P. kofoidii. In the LSU rDNA phylogeny, however, the clade composed of P. hartmannii and a sequence of the photosynthetic Polykrikos lebourae was well separated from the clade composed of 10 entries of Polykrikos schwartzii and P. kofoidii. In addition, a gap of ~180 bases was observed when the LSU rDNA sequences of P. hartmannii were aligned with P. schwartzii and P. kofoidii but was not observed in the alignment between P. hartmannii and P. lebourae. Using scanning electron microscopy, several morphological features previously not reported for P. hartmannii were observed: a ventral groove located in the sulcus, a deep arc‐like apical concavity within the area of apical groove, scale‐like vesicles, and a shallow, completely enclosed, loop‐like apical groove. Resting cysts with arrow‐like surface spines were produced heterothallically by crossing clonal isolates and germinated single gymnoid cells. Finally, filtered and unfiltered bloom water from the Forge River and clonal cultures of P. hartmannii exhibited acute ichthyotoxicity to juvenile sheepshead minnows (Cyprinodon variegates) and aeration did not mitigate this effect, suggesting P. hartmannii is an ichthyotoxic, harmful alga.  相似文献   

10.
11.
The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next‐generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra‐individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos.  相似文献   

12.
13.
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low‐salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near‐maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.  相似文献   

14.
15.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

16.
We have developed 11 microsatellite markers that are specific to Chattonella antiqua, C. marina, and C. ovata, the red tide‐forming harmful phytoplanktons. The 11 loci were amplified in the three species. The number of alleles per locus ranged from 5 to 16. The three species shared most microsatellite regions, although the genetic differences in specific loci were detected among them. These markers of the Chattonella species will be beneficial for biogeographical, detailed taxonomic, studies.  相似文献   

17.
18.
DNA barcodes have been increasingly used in authentication of medicinal plants, while their wide application in materia medica is limited in their accuracy due to incomplete sampling of species and absence of identification for materia medica. In this study, 95 leaf accessions of 23 species (including one variety) and materia medica of three Pharmacopoeia‐recorded species of Angelica in China were collected to evaluate the effectiveness of four DNA barcodes (rbcL, matK, trnH‐psbA and ITS). Our results showed that ITS provided the best discriminatory power by resolving 17 species as monophyletic lineages without shared alleles and exhibited the largest barcoding gap among the four single barcodes. The phylogenetic analysis of ITS showed that Levisticum officinale and Angelica sinensis were sister taxa, which indicates that L. officinale should be considered as a species of Angelica. The combination of ITS + rbcL + matK + trnH‐psbA performed slight better discriminatory power than ITS, recovering 23 species without shared alleles and 19 species as monophyletic clades in ML tree. Authentication of materia medica using ITS revealed that the decoction pieces of A. sinensis and A. biserrata were partially adulterated with those of L. officinale, and the temperature around 80 °C processing A. dahurica decoction pieces obviously reduced the efficiency of PCR and sequencing. The examination of two cultivated varieties of A. dahurica from different localities indicated that the four DNA barcodes are inefficient for discriminating geographical authenticity of conspecific materia medica. This study provides an empirical paradigm in identification of medicinal plants and their materia medica using DNA barcodes.  相似文献   

19.
20.
Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca2+ deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up‐regulated cell wall hydrolases and down‐regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down‐regulated under Ca2+‐deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8′‐hydroxylases, key enzymes for ABA catabolism, were up‐regulated by 21‐fold under Ca2+‐deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over‐expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca2+ deficiency‐induced embryo abortion via ABA‐mediated apoptosis. The results elucidated the mechanism of low Ca2+‐induced embryo abortion and described the method for other fields of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号